

UNIVERSIDAD DE ESPECIALIDADES ESPIRITU SANTO

FACULTAD DE ARQUITECTURA

ESCUELA DE INGENIERÍA CIVIL

RIESGO SÍSMICO EN EDIFICACIONES DE LA ZONA NORTE DE LA CIUDAD DE MILAGRO

Trabajo de Investigación que se presenta como requisito previo a optar el grado de Ingeniero Civil

Autor: Juan Andre Vargas Centanaro

Tutor: Ing. Alex Villacrés Sánchez, M.Sc.

Samborondón, Abril 2015

CERTIFICACÍON FINAL DE APROBACIÓN DEL TUTOR

En mi calidad de tutor del estudiante Juan Andre Vargas Centanaro, que

cursa estudios en la escuela de Ingeniería Civil, dictado en la Facultad de

Arquitectura de la UEES.

CERTIFICO:

Que he revisado el trabajo de titulación con el título: RIESGO SÍSMICO

EN EDIFICACIONES DE LA ZONA NORTE DE LA CIUDAD DE

MILAGRO, presentado por el estudiante Juan Andre Vargas Centanaro, con

cedula de ciudadanía Nº. 0915656102, como requisito previo para optar por el

Grado Académico de Ingeniero Civil, y considero que dicho trabajo investigativo

ha incorporado y corregido las sugerencias y observaciones solicitadas por los

miembros del tribunal, por lo tanto reúne los requisitos y méritos suficientes

necesarios de carácter académico y científico, para presentarse a la defensa final.

Tutor: Ing. Alex Villacrés Sánchez, M.Sc.

Samborondón, Abril 2015

CONTENIDO

CONTENIDO	4
Índice de tablas	6
Índice de figuras	8
Índice de gráficos	13
RESUMEN	14
INTRODUCCIÓN	17
CAPÍTULO I: EL PROBLEMA	21
1.1 Planteamiento del problema	21
1.2. Preguntas de investigación	24
1.3. Objetivos Generales y Específicos	25
1.3.1. Objetivos Generales	25
1.3.2. Objetivos Específicos	25
1.4. Formulación del problema	26
1.5. Justificación	26
1.6. Delimitación espacial y temporal	27
CAPÍTULO II: METODOLOGÍA	30
2.1 Diseño de la investigación	30
2.2 Población y muestra	31
2.3 Instrumentos de recolección de datos	33
CAPÍTULO III: MARCO REFERENCIAL	38
3.1. Definiciones conceptuales	38
3.2. Fundamentación teórica	47
3.2.1. Coeficientes de amplificación dinámica de perfiles de suelo Fa, Fd y Fs.	56
3.2.2. Espectros elásticos de diseño	58
3.2.2.1. Espectro elástico de diseño en aceleraciones	58
3.2.3. Coeficientes de configuración estructural	60
3.2.3.1 Coeficiente de configuración estructural en planta φP	60
3.2.3.2. Coeficiente de configuración estructural en elevación φE	61
3.2.4. Procedimiento de cálculo de fuerzas sísmicas estáticas	63
3.2.4.1. Tipo de uso, destino e importancia de la edificación, coeficiente I	63

3.2.4.2. Carga reactiva definida, W	64
3.2.4.3. Factor de reducción de respuesta estructural, R	66
3.2.4.4. Coeficiente de diseño sísmico	68
3.2.4.5. Cortante basal de diseño	70
3.3. Indicadores de estimación de vulnerabilidad	71
3.3.1. Evaluación de los Índices de Vulnerabilidad	87
3.3.2. Formulario de Levantamiento Visual de Datos	88
3.3.3. Calculo de los Índices de Vulnerabilidad	90
3.3.4. Función de daño	93
3.3.4.1 Determinación del grado de daño	94
3.3.4.2. Nivel de Vulnerabilidad en las edificaciones	97
3.3.5. Perdidas económicas en el avalúo comercial de las edificaciones	102
CAPÍTULO IV: ANÁLISIS E INTERPRETACIÓN DE RESULTADOS	107
CAPÍTULO V: CONCLUSIONES Y RECOMENDACIONES	110
5.1. Conclusiones	110
5.2. Recomendaciones	111
VI. BIBLIOGRAFIA	114
VII ANEXOS	115

Índice de tablas

Tabla 1 Clasificación y descripción de Niveles de Vulnerabilidad. Fuente: Elaborada por el autor
Tabla 2 Distribución porcentual de acuerdo al tiempo de construcción de las edificaciones. Fuente: Elaborada por el autor
Tabla 3 Relaciones aproximadas entre el número N de la prueba de penetración normal y la resistencia a compresión axial. Fuente: Mecánica de Suelos y cimentaciones, Carlos Crespo Villalaz
Tabla 4 Número medio de Golpes del ensayo de Penetración Estándar. Fuente: Elaborado por el autor
Tabla 5 Resistencia Media al Corte. Fuente: Elaborado por el autor
Tabla 6 Factores de sitio. Fuente: Fuente: (NEC, 2011)
Tabla 7 Tipo de suelo y Factores de sitio Fa. Fuente: (NEC, 2011)57
Tabla 8 Tipo de suelo y Factores de sitio Fd. Fuente: (NEC, 2011)57
Tabla 9 Tipo de suelo y Factores de sitio Fs. Fuente: (NEC, 2011)57
Tabla 10 Fuente: Elaborada por el autor
Tabla 11 Coeficiente de configuración estructural en elevación φE. Fuente: Elaborado por el autor
Tabla 12 Tipo de uso, destino e importancia de la edificación, coeficiente I. Fuente: Norma Ecuatoriana de La construcción, Cap. 2
Tabla 13 Calculo de cargas Viva y muerta. Fuente: Elaborado por el autor 65
Tabla 14 Carga Reactiva, W. Fuente: Elaborado por el autor65
Tabla 15 Factor de reducción de respuesta estructural, R. Fuente: (NEC, 2011) 66
Tabla 16 Factor de reducción de respuesta estructural, R. Fuente: Elaborada por el autor
Tabla 17 Coeficiente de Diseño Sísmico, Cs. Fuente: Elaborada por el autor 69
Tabla 18 Cortante Basal de Diseño, V. Fuente: Elaborado por el autor71
Tabla 19 Material de Construcción Predominante. Fuente: Elaborada por el autor. 73
Tabla 20 Sistema Constructivo. Fuente: Elaborada por el autor
Tabla 21 Estado de Conservación. Fuente: Elaborada por el autor75

Tabla 22 Altura de la edificación. Fuente: Elaborada por el autor
Tabla 23 Antigüedad. Fuente: Elaborada por el autor
Tabla 24 Tipología de edificaciones. Fuente: (Proyecto RADIUS, 1999)
Tabla 25 Factores de Vulnerabilidad en Edificaciones, 1. Fuente: Elaborada por el autor
Tabla 26 Clase. Fuente: Proyecto RADIUS 1999
Tabla 27 Clase. Fuente: Proyecto RADIUS 1999
Tabla 28 Factores de Peso. Fuente: Proyecto RADIUS 1999
Tabla 29 Clase. Índice de Vulnerabilidad, Factores Peso, Clase y Vulnerabilidad. Fuente: Proyecto RADIUS 1999
Tabla 30 Formulario de Levantamiento Visual de Datos. Fuente: Elaborado por el autor
Tabla 31 Calculo de Índices de Vulnerabilidad. Fuente: Elaborada por el autor 92
Tabla 32 Calculo del Porcentaje de daño para una I=VIII (Edificios de Hormigón y Acero). Fuente: Elaborada por el autor
Tabla 33 Calculo del Porcentaje de daño para una I=VIII (Edificaciones Mixtas y Madera). Fuente: Elaborada por el autor
Tabla 34 Clasificación y descripción de Niveles de Vulnerabilidad. Fuente: Elaborada por el autor
Tabla 35 Niveles de Vulnerabilidad en las Edificaciones. Fuente: Elaborada por el autor
Tabla 36 Distribución porcentual de los 4 Niveles de Vulnerabilidad. Fuente: Elaborada por el autor
Tabla 37 Perdida Económica. Fuente: Elaborada por el autor

Índice de figuras

Figura 1Ubicación espacial de la zona evaluada. Fuente: tomado de Google Earth
Figura 2Mapa Político de la ciudad de Milagro. Fuente: tomado del Plan de Desarrollo y Ordenamiento Territorial del Cantón San Francisco de Milagro 23
Figura 3Mapa urbano de la ciudad de Milagro. Fuente: tomado del Plan de Desarrollo y Ordenamiento Territorial del Cantón San Francisco de Milagro 24
Figura 4 Edad de las Edificaciones. Fuente: Elaborada por el autor
Figura 5 Ubicación espacial de la zona evaluada. Fuente: tomado de Google Earth
Figura 6 Función de daños para Estructuras Mixtas. Fuente: Proyecto RADIUS.93
Figura 7 Función de daños para Estructuras de Hormigón. Fuente: Proyecto RADIUS
Figura 8 Formulario de Levantamiento Visual de Datos 001. Fuente: Elaborado por el autor
Figura 9 Formulario de Levantamiento Visual de Datos 002. Fuente: Elaborado por el autor
Figura 10 Formulario de Levantamiento Visual de Datos 003. Fuente: Elaborado por el autor
Figura 11 Formulario de Levantamiento Visual de Datos 004. Fuente: Elaborado por el autor
Figura 12 Formulario de Levantamiento Visual de Datos 005. Fuente: Elaborado por el autor
Figura 13 Formulario de Levantamiento Visual de Datos 006. Fuente: Elaborado por el autor
Figura 14 Formulario de Levantamiento Visual de Datos 007. Fuente: Elaborado por el autor
Figura 15 Formulario de Levantamiento Visual de Datos 008. Fuente: Elaborado por el autor
Figura 16 Formulario de Levantamiento Visual de Datos 009. Fuente: Elaborado por el autor
Figura 17 Formulario de Levantamiento Visual de Datos 010. Fuente: Elaborado por el autor

Figura 18 Formulario de Levantamiento Visual de Datos 011. Fuente: Elaborado por el autor
Figura 19 Formulario de Levantamiento Visual de Datos 012. Fuente: Elaborado por el autor
Figura 20 Formulario de Levantamiento Visual de Datos 013. Fuente: Elaborado por el autor
Figura 21 Formulario de Levantamiento Visual de Datos 014. Fuente: Elaborado por el autor
Figura 22 Formulario de Levantamiento Visual de Datos 015. Fuente: Elaborado por el autor
Figura 23 Formulario de Levantamiento Visual de Datos 016. Fuente: Elaborado por el autor
Figura 24 Formulario de Levantamiento Visual de Datos 017. Fuente: Elaborado por el autor
Figura 25 Formulario de Levantamiento Visual de Datos 018. Fuente: Elaborado por el autor
Figura 26 Formulario de Levantamiento Visual de Datos 019. Fuente: Elaborado por el autor
Figura 27 Formulario de Levantamiento Visual de Datos 020. Fuente: Elaborado por el autor
Figura 28 Formulario de Levantamiento Visual de Datos 021. Fuente: Elaborado por el autor
Figura 29 Formulario de Levantamiento Visual de Datos 022. Fuente: Elaborado por el autor
Figura 30 Formulario de Levantamiento Visual de Datos 023. Fuente: Elaborado por el autor
Figura 31 Formulario de Levantamiento Visual de Datos 024. Fuente: Elaborado por el autor
Figura 32 Formulario de Levantamiento Visual de Datos 025. Fuente: Elaborado por el autor
Figura 33 Formulario de Levantamiento Visual de Datos 026. Fuente: Elaborado por el autor

Figura 34 Formulario de Levantamiento Visual de Datos 027. Fuente: Elaborado por el autor
Figura 35 Formulario de Levantamiento Visual de Datos 028. Fuente: Elaborado por el autor
Figura 36 Formulario de Levantamiento Visual de Datos 029. Fuente: Elaborado por el autor
Figura 37 Formulario de Levantamiento Visual de Datos 030. Fuente: Elaborado por el autor
Figura 38 Formulario de Levantamiento Visual de Datos 031. Fuente: Elaborado por el autor
Figura 39 Formulario de Levantamiento Visual de Datos 032. Fuente: Elaborado por el autor
Figura 40 Formulario de Levantamiento Visual de Datos 033. Fuente: Elaborado por el autor
Figura 41 Formulario de Levantamiento Visual de Datos 034. Fuente: Elaborado por el autor
Figura 42 Formulario de Levantamiento Visual de Datos 035. Fuente: Elaborado por el autor
Figura 43 Formulario de Levantamiento Visual de Datos 036. Fuente: Elaborado por el autor
Figura 44 Formulario de Levantamiento Visual de Datos 037. Fuente: Elaborado por el autor
Figura 45 Formulario de Levantamiento Visual de Datos 038. Fuente: Elaborado por el autor
Figura 46 Formulario de Levantamiento Visual de Datos 039. Fuente: Elaborado por el autor
Figura 47 Formulario de Levantamiento Visual de Datos 040. Fuente: Elaborado por el autor
Figura 48 Formulario de Levantamiento Visual de Datos 041. Fuente: Elaborado por el autor
Figura 49 Formulario de Levantamiento Visual de Datos 042. Fuente: Elaborado por el autor

Figura 50 Formulario de Levantamiento Visual de Datos 043. Fuente: Elaborado por el autor
Figura 51 Formulario de Levantamiento Visual de Datos 044. Fuente: Elaborado por el autor
Figura 52 Formulario de Levantamiento Visual de Datos 045. Fuente: Elaborado por el autor
Figura 53 Formulario de Levantamiento Visual de Datos 046. Fuente: Elaborado por el autor
Figura 54 Formulario de Levantamiento Visual de Datos 047. Fuente: Elaborado por el autor
Figura 55 Formulario de Levantamiento Visual de Datos 048. Fuente: Elaborado por el autor
Figura 56 Formulario de Levantamiento Visual de Datos 049. Fuente: Elaborado por el autor
Figura 57 Formulario de Levantamiento Visual de Datos 050. Fuente: Elaborado por el autor
Figura 58 Formulario de Levantamiento Visual de Datos 051. Fuente: Elaborado por el autor
Figura 59 Formulario de Levantamiento Visual de Datos 052. Fuente: Elaborado por el autor
Figura 60 Formulario de Levantamiento Visual de Datos 053. Fuente: Elaborado por el autor
Figura 61 Formulario de Levantamiento Visual de Datos 054. Fuente: Elaborado por el autor
Figura 62 Formulario de Levantamiento Visual de Datos 055. Fuente: Elaborado por el autor
Figura 63 Formulario de Levantamiento Visual de Datos 056. Fuente: Elaborado por el autor
Figura 64 Formulario de Levantamiento Visual de Datos 057. Fuente: Elaborado por el autor
Figura 65 Formulario de Levantamiento Visual de Datos 058. Fuente: Elaborado por el autor

Figura 66 Formulario de Levantamiento Visual de Datos 059. Fuente: Elaborado por el autor
Figura 67 Formulario de Levantamiento Visual de Datos 060. Fuente: Elaborado por el autor
Figura 68 Formulario de Levantamiento Visual de Datos 061. Fuente: Elaborado por el autor
Figura 69 Formulario de Levantamiento Visual de Datos 062. Fuente: Elaborado por el autor
Figura 70 Formulario de Levantamiento Visual de Datos 063. Fuente: Elaborado por el autor
Figura 71 Formulario de Levantamiento Visual de Datos 064. Fuente: Elaborado por el autor
Figura 72 Formulario de Levantamiento Visual de Datos 065. Fuente: Elaborado por el autor
Figura 73 Formulario de Levantamiento Visual de Datos 066. Fuente: Elaborado por el autor
Figura 74 Formulario de Levantamiento Visual de Datos 067. Fuente: Elaborado por el autor
Figura 75 Formulario de Levantamiento Visual de Datos 068. Fuente: Elaborado por el autor
Figura 76 Formulario de Levantamiento Visual de Datos 069. Fuente: Elaborado por el autor
Figura 77 Formulario de Levantamiento Visual de Datos 070. Fuente: Elaborado por el autor
Figura 78 Formulario de Levantamiento Visual de Datos 071. Fuente: Elaborado por el autor
Figura 79 Formulario de Levantamiento Visual de Datos 072. Fuente: Elaborado por el autor
Figura 80 Estudio de Suelos. Fuente: CONSTRULADESA SUELOS Y HORMRIGONES S.A

Índice de gráficos

Grafico 1 Espectro Sísmico Elástico de Aceleraciones. Fuente: Elaborada por autor.	
autoi.	UU
Grafico 2 Tipologías Predominantes. Fuente: Elaborada por el autor	79
Grafico 3 Tipologías No Predominantes. Fuente: Elaborada por el autor	80
Grafico 4 Niveles de Vulnerabilidad. Fuente: Elaborada por el autor	02

RESUMEN

El cantón Milagro es uno de los 25 cantones que conforman la provincia del Guayas, el tercero más grande a nivel habitacional y poblacional con un aproximado de 166.634 habitantes. Existe una gran posibilidad de que ocurran sismos de gran magnitud, debido a que el cantón así como una gran mayoría de los cantones vecinos, se encuentran localizados en una zona de alta sismicidad, que ha sido establecida en el mapa de zona sísmica incluido en la Norma Ecuatoriana de La Construcción NEC, esta información deriva de estudios sísmicos realizados en el Ecuador hasta el año 2011. En este mapa de zonificación sísmica, el cantón Milagro se localiza de acuerdo a la caracterización del peligro sísmico, en una zona IV que equivale a alto riesgo.

En el Ecuador se han realizado evaluaciones del riesgo sísmico en tres ciudades importantes como Cuenca, Guayaquil y Quito. En Guayaquil se lo denomino PROYECTO RADIUS, "los estudios se iniciaron en Febrero de 1998, bajo el liderazgo de la Dirección del Plan de Desarrollo Urbano y Cantonal de la M.I. Municipalidad de Guayaquil" (Argudo, 2011). En la ciudad de Quito la evaluacion del riesgo sismico estuvo a cargo de la compañía ITConsult, Consultoria Técnica en Ingeniería Cía. Ltda.y de la Escuela Politécnica Nacional de Quito. En dichos estudios se determinaron los posibles colapsos en edificaciones, en el caso de un sismo de gran intensidad ocurrido en cada una de las ciudades previamente citadas. En la ciudad de Milagro no existen estudios de este tipo.

Es por ello que el presente trabajo pretende determinar el riesgo sísmico en la zona norte de la parroquia Camilo Andrade, delimitada al Norte por la calle 24 de Mayo, al Sur por la calle Gabriel García Moreno, al Este con la calle Pedro Carbo y al Oeste con la calle Ernesto Seminario, riesgos ciertamente acentuados debido al grado de deterioro de las estructuras que se encuentra en dicha zona.

Se espera que los resultados obtenidos contribuyan y den pautas a las autoridades competentes tanto Municipalidad como Gobierno central, así como la población que habitan en esa zona; y puedan tomar las medidas de prevención necesarias en caso de llegar a ocurrir un sismo de gran intensidad tanto en preparación, respuesta y recuperación. Se considera que dicho riesgo es representativo del riesgo sísmico de toda la parroquia Camilo Andrade.

INTRODUCCIÓN

En el presente trabajo, se han establecido cuatro niveles que determinan el tipo de Vulnerabilidad al cual están expuestas las edificaciones localizadas dentro de la zona Norte de la parroquia Camilo Andrade, delimitada al Norte por la calle 24 de Mayo, al Sur por la calle Gabriel García Moreno, al Este con la calle Pedro Carbo y al Oeste con la calle Ernesto Seminario. Los efectos esperados para cada uno de los niveles de Vulnerabilidad se han establecido en base a los distintos factores a los cuales están expuestos las edificaciones que se localizan en dicha zona como el de estar cerca de consumir ya su vida útil y de que la mayor parte de dichas edificaciones muestran el deterioro de sus estructuras. Se sumó a esto la susceptibilidad al daño de muchas edificaciones ya que tienen un alto grado de exposición por estar situadas en una ciudad con alta peligrosidad sísmica como Milagro y fueron construidas antes de la promulgación de la Norma Ecuatoriana de la Construcción, de manera que se presume que no han sido diseñadas apropiadamente y que a lo largo de su vida han sido reformadas, ampliadas o dadas un uso distinto al contemplado en el diseño, según se explican en el cuadro siguiente, ver tabla # 1:

Vulnerabilidad		Descripción	
		Existe una gran posibilidad del colapso de la	
	Muy Alta	edificación. Destrucción total con	
		pocos supervivientes. Porcentaje de daño (75-100%).	
	Alta	Grandes daños en importantes edificios, con	
		derrumbes parciales. Porcentaje de daño (50 – 74	
		%).	
		Daños leves en estructuras especializadas. Daños	
	Intermedio	considerables en estructuras ordinarias bien	
		construidas, posibles derrumbes. Daño severo en	
		estructuras pobremente construidas. Porcentaje de	
		daño (25 – 49 %).	
		Daños insignificantes en estructuras de buen diseño	
	Bajo	y construcción. Daños leves a moderados en	
		estructuras ordinarias bien construidas. Daños	
		considerables en estructuras pobremente construidas.	
		Porcentaje de daño (1 – 24 %).	

Tabla 1 Clasificación y descripción de Niveles de Vulnerabilidad. Fuente: Elaborada por el autor

CAPITULO I EL PROBLEMA

CAPÍTULO I: EL PROBLEMA

1.1 Planteamiento del problema

en la zona norte-parroquia Camilo Andrade de la ciudad de Milagro. Ver figura #2. El Cantón Milagro, Provincia del Guayas, se encuentra localizado en una zona de alta sismicidad. Las condiciones geológicas del suelo de la ciudad de Milagro, lo hacen sensible ante amenazas naturales de origen tectónico. En este sentido, debe considerarse a la ciudad altamente vulnerable ante este tipo de riesgos. La parroquia urbana Camilo Andrade del cantón Milagro esta subdividida administrativamente en 19 ciudadelas entre las cuales se encuentran, ver figura #3:

La investigación que se presenta trata sobre la determinación del riesgo sísmico

- La Matilde
- Las Margaritas
- Álamos
- Valdez
- Zona Antigua y Central
- Jesús del Gran Poder
- Banco Ecuatoriano de la Vivienda
- Villas del IESS
- María Mercedes

- Banco de Fomento
- La Constancia
- Ricardi
- Cosmopolita
- Garicoa
- Correa
- Tapia Jaramillo
- María Teresa

La mayoría de las edificaciones existentes en la parroquia Camilo Andrade poseen más de 30 años de construidas, en una época en la cual las normas constructivas ecuatorianas no especificaban el detallamiento sísmico. A su vez en dicha zona los edificios no poseen el retiro lateral y posterior pertinente encontrándose una mayoría adosados. También podemos encontrar varias patologías, que "son los efectos que surgen en la edificación producto de un mal diseño, una errada configuración estructural, una construcción mal elaborada, o un empleo de materiales deficientes o inapropiados para la obra" (Ariana & Pedro, 2009). Debido a los problemas previamente mencionados se aumenta el riesgo de colapso de las edificaciones en el caso de acontecer un sismo de gran intensidad.

Los 72 edificios a evaluar debido a sus características generales son representativos de una gran parte de las edificaciones localizadas en la zona céntrica de la ciudad de Milagro. Ver figura #1.

Figura 1 Ubicación espacial de la zona evaluada. Fuente: tomado de Google Earth.

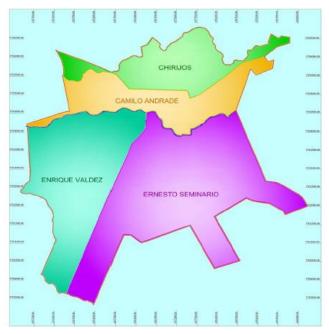


Figura 2 Mapa Político de la ciudad de Milagro. Fuente: tomado del Plan de Desarrollo y Ordenamiento Territorial del Cantón San Francisco de Milagro.

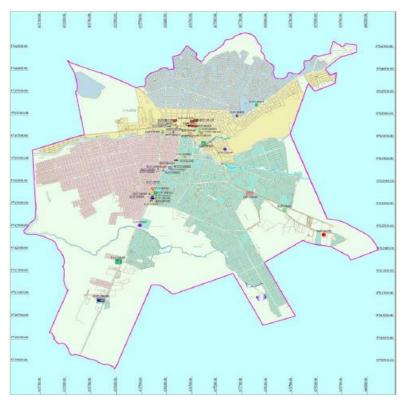


Figura 3 Mapa urbano de la ciudad de Milagro. Fuente: tomado del Plan de Desarrollo y Ordenamiento Territorial del Cantón San Francisco de Milagro.

La zona norte de la parroquia Camilo Andrade, está determinada como un suelo blando.

1.2. Preguntas de investigación

- 1.- ¿Cuáles son los principales riesgos en caso de ocurrir un sismo de gran intensidad?
- 2.- ¿Las edificaciones existentes en la zona previamente establecida han sido diseñada para soportar cargas sísmicas?

- 3.- ¿Cuál es el grado de deterioro de las edificaciones?
- 4.- ¿Qué factores de riesgo están presentes en las estructuras?
- 5.- ¿Cuáles son los daños que se esperan ocurran en las edificaciones de la ciudad en caso de un sismo, ya sean estos estructurales o no estructurales?

1.3. Objetivos Generales y Específicos

1.3.1. Objetivos Generales

Determinar el riesgo sísmico de las estructuras localizadas en la zona norte de la parroquia Camilo Andrade de la ciudad de Milagro, delimitada al Norte por la calle 24 de Mayo, al Sur por la calle Gabriel García Moreno, al Este con la calle Pedro Carbo y al Oeste con la calle Ernesto Seminario, para tomar las medidas necesarias en busca de prevenir un desastre sísmico.

1.3.2. Objetivos Específicos

1.- Identificar el grado de deterioro de las estructuras y los factores que determinan el riesgo sísmico.

- Determinar cuantitativamente el riesgo sísmico de los edificios de la zona céntrica de la ciudad de Milagro.
- 3.- Determinar las medidas a tomar para reducir el riesgo sísmico de dichas edificaciones.

1.4. Formulación del problema

Es necesario determinar el riesgo sísmico en la zona norte de la parroquia Camilo Andrade, riesgo ciertamente acentuado debido al grado de deterioro de las estructuras que se encuentra en dicha zona, dando una pauta para que las autoridades competentes, así como a personas que habitan en esa zona, puedan tomar las medidas de prevención necesarias en caso de llegar a ocurrir un sismo de gran intensidad. Se considera que dicho riesgo es representativo del riesgo sísmico de toda la parroquia Camilo Andrade.

1.5. Justificación

La mayoría de las edificaciones localizadas en la zona norte de la ciudad de Milagro, parroquia Camilo Andrade, están cerca de consumir ya su vida útil y la mayor parte de dichas edificaciones muestran el deterioro de sus estructuras. Se sumó a esto la vulnerabilidad o susceptibilidad al daño de muchas edificaciones ya

que tienen un alto grado de exposición por estar situadas en ciudad con alta peligrosidad sísmica como Milagro y fueron construidas antes de la promulgación de la Norma Ecuatoriana de la Construcción y de manera que se presume que no han sido diseñadas apropiadamente y que a lo largo de su vida han sido reformadas, ampliadas o dadas un uso distinto al contemplado en el diseño. Se puede intuir que el riesgo sísmico de estas edificaciones es alto y debe ser considerado en la toma de decisiones.

Debido a los factores descritos previamente, hay indicios de que en el caso de un sismo de gran intensidad, existe un alto riesgo de colapso de dichas estructuras provocando pérdidas económicas cuantiosas y a la vez, la muerte de varios ciudadanos.

1.6. Delimitación espacial y temporal

La presente investigación está situada en la zona norte de la ciudad de Milagro, parroquia Camilo Andrade, delimitada al norte por la calle 24 de Mayo, al sur por la calle Gabriel García Moreno, al este con la calle Pedro Carbo y al oeste con la calle Ernesto Seminario. Todos los análisis se realizarán tomando en cuenta la ubicación geográfica de la parroquia Camilo Andrade.

CAPITULO II **METODOLOGIA**

CAPÍTULO II: METODOLOGÍA

2.1 Diseño de la investigación

Entre las características de los estudios de riesgo sísmico realizados en zonas urbanas una de las más importantes es que la metodología fue simplificada al momento de la evaluación de la vulnerabilidad sísmica de las edificaciones en dicha zona a si se pudo aplicarla a un gran conjunto de estructuras. En la primera parte de este trabajo, se presenta la metodología empleada para evaluar la calidad estructural y vulnerabilidad sísmica de los edificios del área de estudio a través del método de los Índices de Vulnerabilidad desarrollado por BENEDETTI y PETRINI en 1984, el cual identifica los parámetros más importantes que controlan el daño en los edificios causados por un terremoto.

Se estudió las características del catastro de edificaciones de la ciudad de Milagro, su distribución, el grado de conservación y número de estructuras por tipo en la zona. Se realizó un análisis de los factores de riesgo que están presentes en las estructuras y se estimó el porcentaje de daños en las edificaciones de la ciudad, ya sean estos estructurales o no estructurales. Para lograr este objetivo se determinó la cantidad de edificaciones diseñadas para soportar carga sísmica. Se realizaron visitas al sitio para evaluar las estructuras y las diversas patologías que presenten

los edificios de estudio. Se determinó el peso del edificio, coeficiente sísmico de diseño y el período fundamental de cada edificio en la zona y el espectro de respuesta.

Se realizó los estudios de Pérdida Probable especificados en la Norma Ecuatoriana de la construcción NEC 2013, en el cual se obtuvieron sus estimaciones, las cuales fueron evaluadas estadísticamente, "considerando la distribución probabilística de terremotos en el sitio de todos los terremotos posibles que puedan impactar en el sitio y la función de distribución probabilística de daño, de acuerdo a la vulnerabilidad del edificio a cada nivel posible de terremoto" (NORMA ECUATORIANA DE LA CONSTRUCCION, 2013).

2.2 Población y muestra

En el área de estudio, se encuentran localizadas 72 edificaciones entre las cuales un 55.55% tienen más de 35 años de haber sido construidas en los cuales podemos encontrar edificios de uso comercial, residencial así como zonas de concentración de un gran número de personas, el otro 22.22% tienen entre 20 y 34 años, y finalmente el 22.22% restante tiene entre 1 y 19 años de haber sido construidas. Ver tabla # 2 y figura # 4

Edificaciones				
Edad Años	Porcentaje %			
Entre (35 - 55 años)	55.55			
Entre (20 - 34 años)	22.22			
Entre (1 - 19 años)	22.22			

Tabla 2 Distribución porcentual de acuerdo al tiempo de construcción de las edificaciones. Fuente: Elaborada por el autor

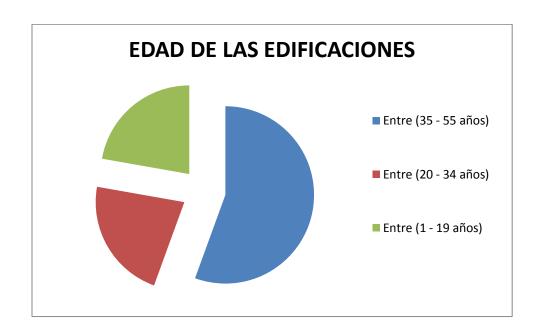


Figura 4 Edad de las Edificaciones. Fuente: Elaborada por el autor

Los 72 edificios a evaluar debido a sus características generales son representativos de una gran parte de las edificaciones localizadas en la zona céntrica de la ciudad de Milagro. Ver figura # 5.

Figura 5 Ubicación espacial de la zona evaluada. Fuente: tomado de Google Earth.

2.3 Instrumentos de recolección de datos.

En 2.2.2. Se describe el formulario que se ha utilizado para el levantamiento de la información de las edificaciones localizadas dentro de la zona norte de la parroquia Camilo Andrade, delimitada al norte por la calle 24 de Mayo, al sur por la calle Gabriel García Moreno, al este con la calle Pedro Carbo y al oeste con la calle Ernesto Seminario objeto de este estudio. En el programa Microsoft Excel y mediante una computadora portátil se ingresaran los datos recopilados en el sitio, para luego identificar las características generales de cada edificación y a su vez la

información específica de los edificios de estudio. Se formularon tablas en dicho programa para calcular la Vulnerabilidad, Coeficiente Sísmico, Cortante Basal de Diseño, Periodo de las edificaciones, Sa, Sd.

Previo a consulta y permisos de cada dueño de los diferentes edificios a estudiar se realizaron inspecciones para poder recopilar mayor información sobre distintas patologías que se pudieran encontrar en dichos edificios y a su vez los estudios de suelo pertinentes para dicha zona, también se utilizaron para determinar el perfil de suelo.

Cada visita a un edificio se basó en su mayoría con una inspección visual y recorrido por las distintas áreas e instalaciones de los edificios a estudiar, además de entrevista al propietario de dicho edificio con el propósito de conseguir información que por la vía visual no se pudiera obtener.

Los datos obtenidos fueron:

- Tipo de adosamiento
- Estado del concreto/Acero de refuerzo
- Estado de los elementos estructurales
- Agrietamiento en pisos, paredes, columnas y vigas
- Estado general del mantenimiento del edificio
- Patologías en la edificación

- Asimetría en planta (irregularidad Ø P)
- Asimetría en elevación (irregularidad Ø E)
- Altura del edificio
- Periodo de vibración del edificio
- Material de construcción
- Sistema constructivo
- Edad
- Número de pisos

CAPITULO III MARCO REFERENCIAL

CAPÍTULO III: MARCO REFERENCIAL

3.1. Definiciones conceptuales.

Aceleración sísmica:

La aceleración sísmica es la medida de un terremoto más utilizada en ingeniería, y es el valor utilizado para establecer normativas sísmicas y zonas de riesgo sísmico. Durante un terremoto, el daño en los edificios y las infraestructuras está íntimamente relacionado con la velocidad y la aceleración símica, y no con la magnitud del temblor. En terremotos moderados, la aceleración es un indicador preciso del daño, mientras que en terremotos muy severos la velocidad sísmica adquiere una mayor importancia (NEC, 2011).

Adosamiento:

Por definición una edificación adosada es aquella que se encuentra en contacto con otras dos, una a cada lado (MUNICIPIO DEL DISTRITO METROPOLITANO DE QUITO, 2003).

Base de la estructura:

Nivel al cual se considera que la acción sísmica actúa sobre la estructura (MIDUVI, CAMARA DE LA CONTRUCCION DE QUITO, 2011).

Carga sísmica:

Utilizado en la ingeniería sísmica para definir las acciones que un sismo provoca sobre la estructura de una edificación las cuales deben ser soportadas por esta (MIDUVI, CAMARA DE LA CONTRUCCION DE QUITO, 2011).

Catastro:

Es la descripción física, valor económico y situación jurídica de los bienes inmuebles de las zonas urbanas y rurales mediante un registro administrativo dependiente de los municipios.

Colapso estructural:

Cualquier condición externa o interna que incapacita a una estructura o elemento estructural a cumplir la función para la que ha sido diseñada (MIDUVI, CAMARA DE LA CONTRUCCION DE QUITO, 2011).

Cortante basal:

Es la reacción que tu estructura tiene cuando está sujeta principalmente a Fuerzas Accidentales (horizontales) como viento o sismo, inclusive también un marco sujeto a fuerzas verticales, igual presenta cortante horizontal en su base (MIDUVI, CAMARA DE LA CONTRUCCION DE QUITO, 2011).

Daño sísmico estructural:

El daño sísmico estructural es el que sufren las vigas, las columnas, las losas o las cimentaciones durante un sismo. Es decir, es el deterioro de aquellos elementos o componentes que forman parte del sistema resistente o estructural de la edificación (MIDUVI, CAMARA DE LA CONTRUCCION DE QUITO, 2011).

Deriva de Piso:

Desplazamiento lateral relativo de un piso con respecto al piso consecutivo, medido en dos puntos ubicados en la misma línea vertical de la estructura (MIDUVI, CAMARA DE LA CONTRUCCION DE QUITO, 2011).

Derivadas Totales:

Se define como la relación entre el desplazamiento lateral máximo en el tope del edificio dividido por la altura total del edificio.

Ductilidad:

"Es la capacidad de un elemento cualquiera en sufrir deformaciones plásticas sin perder su resistencia. Esta deformación o distorsión disipa energía del terremoto" (R. Aguilar, 2011).

Elemento estructural:

Cada una de las piezas que forman parte de una estructura, posee un carácter unitario y se muestra de la misma manera bajo la acción de una carga aplicada. También llamada miembro estructural, pieza estructural (MIDUVI, CAMARA DE LA CONTRUCCION DE QUITO, 2011).

Espectro de Respuesta:

Se define "como un como un gráfico de la respuesta máxima (expresada en términos de desplazamiento, velocidad, aceleración, o cualquier otro parámetro de interés) que produce una acción dinámica determinada en una estructura u oscilador de un grado de libertad" (Francisco Crisafulli, 2011).

Estructura:

Conjunto de elementos estructurales ensamblados para resistir cargas verticales, sísmicas y de cualquier otro tipo. Las estructuras pueden clasificarse en estructuras de edificación y otras estructuras distintas a las de edificación (MIDUVI, CAMARA DE LA CONTRUCCION DE QUITO, 2011).

Estructuración y Configuración Estructural de un Edificio

"La configuración de la construcción, la cual se define como el tamaño y forma del edificio, junto con la naturaleza y características de los elementos estructurales y no estructurales del edificio" (Guerrero, 2009).

Espectro de respuesta:

Un espectro de respuesta es un valor utilizado en los cálculos de ingeniería sísmica, que mide la reacción de una estructura ante la vibración del suelo que la soporta (MIDUVI, CAMARA DE LA CONTRUCCION DE QUITO, 2011).

Geología y Zonificación Geotécnica

"La zonificación geotécnica hace parte del proceso que conduce a la microzonificación sísmica de un territorio, siendo una de las actividades

inmediatamente anteriores a los análisis y modelamiento de la respuesta dinámica de los depósitos de suelo" (Albarracin, 2005).

Intensidad sísmica:

Es la violencia con que se siente un sismo en diversos puntos de la zona afectada. La medición se realiza observando los efectos o daños producidos por el temblor en las construcciones, objetos, terreno y el impacto que provoca en las personas. Su valor depende de la distancia del epicentro, tipo de construcción, calidad del suelo o roca de la localidad y del lugar que ocupan las personas (por ejemplo, en un piso en altura u a nivel del suelo, etc (Guerrero, 2009).

Magnitud:

La magnitud es un parámetro que ayuda a determinar la cantidad de energía liberada durante un sismo. Ésta es un valor único que se obtiene a partir de las características que muestra el sismo en los sismogramas (DAVILA, 2011).

Método Constructivo:

Es la técnica que se emplea para ejecutar una obra.

Norma Ecuatoriana de la Construcción:

La normativa comprende 16 capítulos, divididos en dos tomos, dispone que las

nuevas edificaciones sean sismo resistente. Su aplicación será obligatoria en todo

el país y formará parte de la nueva Ley de Vivienda que prepara el Miduvi. Con

ésta ley, Ecuador se convierte en el primer país de la región que cuenta con la

utilización de metodología para determinar el peligro sísmico (ANDES, 2011).

Patologías:

Son los efectos que surgen en la edificación producto de un mal diseño, una errada

configuración estructural, una construcción mal elaborada, o un empleo de

materiales deficientes o inapropiados para la obra.

Pérdida:

Daño parcial total que se recibe en un bien o cosa.

Periodo fundamental de un edificio:

El período fundamental de una estructura es el tiempo que esta toma en dar un ciclo

completo cuando experimenta vibración no forzada. Su determinación es

44

primordial porque de él depende la magnitud de la fuerza sísmica que experimentará la estructura (R. Aguilar, 2011).

Peso del edificio:

El peso del edificio es el total de la suma de los pesos de todos los pisos incluyendo la parte estructural como también mampostería que sean fijos permanentemente.

El peso del edificio está compuesto por:

- Peso estructura
- Peso muros, tabiques divisorios, cierres.
- Peso pisos y revestimientos
- Peso de otros elementos fijos (maquinarias, etc.)
- Peso agua en depósitos de reserva.
- Porcentaje sobrecarga según código.

Resonancia:

Cuando el período de vibración de un edificio coincide o es muy parecido al periodo natural del suelo, ocurre el efecto de resonancia, el cual produce un incremento significativo en las vibraciones experimentadas por el edificio. La resonancia puede causar que las estructuras experimenten aceleraciones de 1g, cuando el suelo vibra a una aceleración mucho menor. Es por esto que los edificios sufren mayor daño

cuando la frecuencia del suelo es parecida a su propia frecuencia (R. Aguilar, 2011).

Retiro lateral:

Se entiende por retiro lateral la afectación del espacio dentro del área privada del predio que separa las edificaciones principales de las divisorias laterales del mismo, de tal forma de relacionar visualmente el espacio frentista con el posterior (Municipio del Distrito Metropolitana de Quito, 2003).

Retiro posterior:

Se entiende por retiro posterior la afectación del área privada del predio que separa las construcciones principales de la divisoria posterior (Municipio del Distrito Metropolitana de Quito, 2003).

Riesgo Sísmico:

"El Riesgo Sísmico se define como el grado esperado de pérdidas sufridas por una estructura o grupo de estructuras en riesgo, durante el período de exposición considerado" (Guerrero, 2009).

Sismo:

Los sismos son movimientos convulsivos en el interior de la tierra y que generan una liberación repentina de energía que se propaga en forma de ondas provocando el movimiento del terreno (Guerrero, 2009).

Vulnerabilidad Sísmica:

"El grado de daño que sufre una estructura, ocasionado por un sismo de determinadas característica" (Guerrero, 2009).

3.2. Fundamentación teórica

En el presente capítulo se exponen las enunciaciones necesarias para la comprensión de este trabajo, el cual se encuentra enmarcado en el estudio de vulnerabilidad y riesgo sísmico.

El Ecuador tiene una larga historia de actividad sísmica que, en los últimos 460 años, ha provocado la destrucción de ciudades enteras como Riobamba e Ibarra, con la muerte de más de 60.000 personas. El riesgo sísmico resulta de la combinación del peligro sísmico, exposición y la vulnerabilidad de las edificaciones. El Ecuador se encuentra ubicado en una zona de alto peligro sísmico. A partir del año de 1983, el Instituto Geofísico de la Escuela Politécnica Nacional "constituye el principal centro de investigación en Ecuador para el diagnóstico y la

vigilancia de los peligros sísmicos y volcánicos" (Instituto Geofísico de la Escuela Politécnica Nacional, 2010), y a partir del 13 de enero de 2003, obtiene por parte del Estado ecuatoriano la responsabilidad a nivel nacional de los diagnosticos, monitoreos y vigilancia de los peligros tanto sismicos como volcánicos.

En la escala de Mercalli se numeran los sismos según sus intensidades, los iguales o mayores a VII en dicha escala constituyen aquellos eventos que son considerados catastróficos los efectos producidos por el sismo. Se enunciaran a continuación los sismos ocurridos con tales características entre los años de1900 y 1999 en base a los registros publicados por el Instituto Geofísico de la Escuela Politécnica Nacional.

31/01/1906: La provincia de Esmeraldas padeció de grandes efectos producto de un gran terremoto cuyo epicentro se situó en el océano Pacifico, debido a que la zona no se encontraba muy poblada en dicha época y que el epicentro se localizó muy alejado de la costa, no hubo consecuencias mortales.

16/12/1923: En la provincia del Carchi ocurrió un terremoto que produjo las consecuencias más catastróficas en dicha zona, hasta esa fecha. Colapsaron viviendas y varios tipos de edificaciones especialmente en las zonas rurales de la provincia. Fallecieron aproximadamente unas 300 personas, se inhabilitaron varias vías debido a los deslizamientos ocurridos. Como consecuencia del sismo hubo varios daños tanto en la mampostería como estructurales en diversas edificaciones.

14/05/1942: En la Región Costa ocurrió un sismo cuyos efectos se extendieron por varias provincias de la Costa y dos de la Sierra. Como consecuencia se produjo la colisión de edificios y viviendas en la Costa, cuarteamientos graves en paredes y cubiertas y las pérdidas materiales fueron cuantiosas, en especial en la ciudad de Guayaquil.

19/01/1958: En Esmeraldas aconteció un sismo catastrófico que causo el colapso total de casas antiguas y parciales de construcciones nuevas, también se produjo el cuarteamiento en edificios. El sismo ocasionó grietas de alguna consideración en calles de tierra, también hubo derrumbes y deslizamientos en cerros y taludes, inhabilitando varios caminos.

02/10/1995: En la cordillera de Cutucú se localizó el epicentro del terremoto cuyos efectos produjeron daños de consideración en Macas, Sucúa, Méndez y aldeas de la región. El mayor efecto fue el colapso del puente del río Upano en Macas.

04/08/1998: En la provincia de Manabí ocurrió un terremoto de graves consecuencias, que originó la destrucción algunas edificaciones en la zona de Bahía de Caraquez, daños graves en Canoa, Briceño, San Vicente y localidades cercanas. En otras ciudades de Manabí los daños fueron de menor proporción.

De acuerdo al informe geotécnico realizado por la compañía CONSTRULADESA SUELOS Y HORMIGONES S.A., en el cual se determinó la capacidad portante de los diferentes estratos encontrados en el suelo del sitio de estudio, en base a análisis físicos y mecánicos, y a su vez la elaboración del perfil estratigráfico.

Los trabajos realizados en el campo por la compañía fueron los siguientes;

Se realizó 2 perforaciones 15.00 ml, empleando una máquina perforadora alivianada (trípode de aluminio) con un motor de 10 HP marca briggs & Stratton. El método de extracción de las muestras fueron por el método S.P.T. (Standard Penetration Test) y Shelby, siendo estas alteradas e inalteradas, las mismas que fueron extraídas a cada metro de profundidad. Estas fueron envueltas adecuadamente para que no pierdan su humedad natural y luego llevadas al laboratorio para su clasificación y ensayos pertinentes.

En el laboratorio se procedió a la clasificación de las muestras de acuerdo al número de perforación.

Los ensayos realizados fueron los siguientes

- Límites de ATTERBERG
- Granulometrías, tamices #4, #10, #40, #200
- Contenido de humedad

Estos ensayos permitieron clasificar los suelos, y establecer las características geomecánicas de los mismos. Ver anexo figura # 80.

En la NORMA ECUATORIANA DE LA CONSTRUCCION (NEC 2011), en el capítulo 2 que trata sobre el peligro sísmico y requisitos de diseño sismo resistente, se definen 6 tipos de perfil de suelo, A, B, C, D, E y F. Se utilizaron los parámetros descritos en la norma para la definición del tipo de perfil de suelo localizado en la

zona de estudio, los cuales fueron definir la velocidad de ondas de corte, el número medio de golpes del ensayo de penetración estándar y la resistencia media al corte para dicho suelo.

El informe geotécnico realizado por la compañía CONSTRULADESA SUELOS Y HORMIGONES S.A., determinaba el número de golpes obtenidos en el ensayo de penetración estándar de 9 de los 16 estratos de suelo claramente diferenciales que conformaban dicho perfil. Con el fin de establecer el número de golpes en el ensayo de penetración estándar para los 7 estratos restantes los cuales eran de tipo arcilloso, se obtuvieron mediante "las relaciones aproximadas que existen entre el número N de la prueba de penetración normal y la resistencia a compresión axial no confinada" (NEC, 2011) (qu) el cual está definido para cada estrato dentro del informe geotécnico realizado.

Dicha relación se la define en la tabla 3.

N	En arcillas							
	qu, Kg/cm^2	Descripción						
<2	<0.25	Muy blanda						
2-4	0.25-0.50	Blanda						
4-8	0.50-1.00	Media						
8-15	1.00-2.00	Compacta						
15-30	2.00-4.00	Muy compacta						
>30	>4.00	Dura						

Tabla 3 Relaciones aproximadas entre el número N de la prueba de penetración normal y la resistencia a compresión axial. Fuente: Mecánica de Suelos y cimentaciones, Carlos Crespo Villalaz

El número medio de golpes del ensayo de penetración estándar, N, se obtuvo mediante la siguiente formula;

$$\overline{N} = \frac{\sum_{i=1}^{n} d_i}{\sum_{i=1}^{n} \frac{d_i}{N_i}}$$

En la tabla 4, se muestran los valores obtenidos de Ni, di y N medios;

NUMERO MEDIO DE GOLPES DEL ENSAYO DE PENETRACIÒN ESTANDAR

N^a	di (cm)	Ni	di/ni	SUCS
1	0.40	4	0.10	GM
2	0.57	8	0.07	GC
3	1.53	3	0.51	CL - ML
4	1.47	2	0.74	ML
5	1.00	2	0.50	CL
6	1.00	2	0.50	ML
7	0.60	10	0.06	CL
8	1.40	2	0.70	CL
9	0.80	3	0.27	CL
10	1.20	10	0.12	СН
11	1.00	19	0.05	СН
12	1.00	8	0.13	CL
13	0.65	17	0.04	CL
14	1.35	16	0.08	PT
15	0.60	26	0.02	PT
16	1.40	26	0.05	СН
∑di=	15.97	∑di/ni=	3.940	
$\overline{N} =$	4			

Tabla 4 Número medio de Golpes del ensayo de Penetración Estándar. Fuente: Elaborado por el autor

En Donde:

"Ni, es el número medio de golpes obtenido en el ensayo de penetración estándar para cada estrato del perfil de suelo objeto de estudio" (NEC, 2011).

di, espesor de cada uno de los estratos correspondientes al perfil objeto de estudio.

"Para obtener la resistencia media al corte no drenado, Su, se utilizó la siguiente relación, la cual se aplica únicamente a los K estratos de suelos cohesivos" (NEC, 2011):

$$\overline{S}_u = \frac{d_c}{\sum_{i=1}^k \frac{d_i}{S_{ui}}}$$

En la tabla 5, se muestran los valores obtenidos de Sui, di, dc y Su medios:

	RESISTENCIA MEDIA AL CORTE											
N ^a	di (cm)	Su kgf/cm2	d/su	qu (kg/cm2)	SUCS							
3	1.53	0.19	8.05	0.38	CL - ML							
4	1.47	0.14	10.50	0.28	ML							
5	1.00	0.12	8.00	0.25	CL							
6	1.00	0.13	7.69	0.26	ML							
7	0.60	0.67	0.90	1.33	CL							
8	1.40	0.12	11.20	0.25	CL							
9	0.80	0.19	4.21	0.38	CL							
10	1.20	0.66	1.80	1.33	СН							
11	1.00	1.27	0.79	2.53	СН							
12	1.00	0.50	2.00	1.00	CL							
13	0.65	1.13	0.57	2.27	CL							
16	1.40	1.73	0.81	3.47	СН							
dc=	13.05	∑di/Sui=	56.53	$\overline{S}_u =$	0.23							

Tabla 5 Resistencia Media al Corte. Fuente: Elaborado por el autor

Los valores de N y Su obtenidos son 4 y 0.23 respectivamente, los cuales de acuerdo a la NORMA ECUATORIANA DE LA CONSTRUCCIÓN, corresponden a un Perfil tipo E.

3.2.1. Coeficientes de amplificación dinámica de perfiles de suelo Fa, Fd y Fs

Para el factor de sitio Fa "que amplifica las ordenadas del espectro de respuesta elástico de aceleraciones para diseño en roca, tomando en cuenta los efectos de sitio" (NEC, 2011), Fd "que amplifica las ordenadas del espectro elástico de respuesta de desplazamientos para diseño en roca, considerando los efectos de sitio" (NEC, 2011) y Fs "que consideran el comportamiento no lineal de los suelos, la degradación del periodo del sitio que depende de la intensidad y contenido de frecuencia de la excitación sísmica y los desplazamientos relativos del suelo, para los espectros de aceleraciones y desplazamientos" (NEC, 2011), el valor que corresponde a cada uno de acuerdo a la NORMA ECUATORIANA DE LA CONSTRUCCIÓN, es de 1.26, 1.8 y 1.6 respectivamente descritos en la tabla # 6, ya que el valor Z (Aceleración esperada en roca) que corresponde a la zona de estudio es de 0.35, y el tipo de perfil de suelo que se encuentra en dicha zona es E. Ver tabla # 7, 8 y 9.

	Fa=	1.26
Factores de sitio	Fd=	1.65
	Fs=	1.80

Tabla 6 Factores de sitio. Fuente: (NEC, 2011)

	Zona sísmica	I	II	III	IV	V	VI
Tipo de perfil del subsuelo	valor Z (Aceleración esperada en roca, ´g)	0.15	0.25	0.30	0.35	0.40	≥0.5
Α		0.9	0.9	0.9	0.9	0.9	0.9
В		1	1	1	1	1	1
С		1.4	1.3	1.25	1.23	1.2	1.18
D		1.6	1.4	1.3	1.25	1.2	1.12
E		1.8	1.5	1.39	1.26	1.14	0.97
F		ver nota					

Tabla 7 Tipo de suelo y Factores de sitio Fa. Fuente: (NEC, 2011)

	Zona sismica	I	II	III	IV	V	VI
Tipo de perfil del subsuelo	erfil del (Aceleración		0.25	0.30	0.35	0.40	≥0.5
Α		0.9	0.9	0.9	0.9	0.9	0.9
В		1	1	1	1	1	1
С		1.6	1.5	1.4	1.35	1.3	1.25
D	D		1.7	1.6	1.5	1.4	1.3
Е		2.1	1.75	1.7	1.65	1.6	1.5
F		ver nota					

Tabla 8 Tipo de suelo y Factores de sitio Fd. Fuente: (NEC, 2011)

	Zona sismica	I	II	III	IV	V	VI
Tipo de perfil del subsuelo	valor Z (Aceleración esperada en roca, ´g)	0.15	0.25	0.30	0.35	0.40	≥0.5
Α		0.75	0.75	0.75	0.75	0.75	0.75
В		0.75	0.75	0.75	0.75	0.75	0.75
С		1	1.1	1.2	1.25	1.3	1.45
D		1.2	1.25	1.3	1.4	1.5	1.65
E		1.5	1.6	1.7	1.8	1.9	2
F		ver nota					

Tabla 9 Tipo de suelo y Factores de sitio Fs. Fuente: (NEC, 2011)

3.2.2. Espectros elásticos de diseño

3.2.2.1. Espectro elástico de diseño en aceleraciones

"El espectro de respuesta elástico de aceleraciones expresado como fracción de la aceleración de la gravedad Sa, para el nivel del sismo de diseño" (NEC, 2011), los valores utilizados para obtener el Sa, de cada edificación y a su vez graficar el espectro sísmico elástico de aceleraciones que representan el sismo de diseño son los siguientes: ver tabla # 10.

	Fa=	1.26
Factores de sitio	Fd=	1.65
	Fs=	1.80
Suelo tipo E	r=	1.50
Región Costa	ŋ=	1.80
Factor zona	Z=	0.35
Periodos de	T0=	0.24
Vibración	Tc=	1.30
	Tl=	3.96

Tabla 10 Fuente: Elaborada por el autor

En donde:

Tc= 0.55Fs (Fd/Fa)

T0=0.1Fs (Fd/Fa)

Tl = 2.4Fd

Los valores de Sa, para cada periodo de las 72 edificaciones objeto de estudio fueron determinados mediante la fórmula:

$$T = C_t h_n^{\alpha / \alpha}$$

En donde:

hn "altura máxima de la edificación de *n* pisos, medida desde la base de la estructura, en metros" (NEC, 2011).

"Para pórticos especiales de hormigón armado sin muros estructurales ni diagonales rigidizadoras, Ct = 0.047 y $\alpha = 0.9$ " (NEC, 2011).

Se obtuvo como resultado que para todas las edificaciones $T \le Tc$.

Con los periodos obtenidos, se ha determinado que para las 72 edificaciones el valor de Sa= 0.79g, se graficó el espectro sísmico elástico de aceleraciones incluyendo periodos hasta 4 segundos, ver gráfico #1:

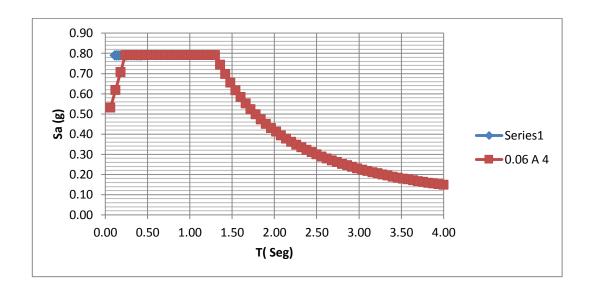


Grafico 1 Espectro Sísmico Elástico de Aceleraciones. Fuente: Elaborada por el autor.

3.2.3. Coeficientes de configuración estructural

3.2.3.1 Coeficiente de configuración estructural en planta φP

Los valores de φP para las 72 edificaciones, se determinaron "a partir del análisis de las características de regularidad e irregularidad en las plantas de cada estructura" (NEC, 2011), las cuales son de 4 tipos:

Tipo 1 – Irregularidad torsional, $\varphi Pi = 0.9$

Tipo 2 – Retrocesos excesivos en las esquinas, $\varphi Pi = 0.9$

Tipo 3 – Discontinuidades en el sistema de piso, $\varphi Pi = 0.9$

Tipo 4 – Ejes Estructurales no paralelos, $\varphi Pi = 0.9$

Se utilizó la expresión:

$$\varphi P = \varphi PA *\varphi PB$$

En donde:

φPA= "El mínimo valor φPi de cada piso i de la estructura, obtenido de la Tabla 3.12, para cuando se encuentran presentes las irregularidades tipo 1, 2 y/o 3" (NEC, 2011).

φPB= En el caso de que en la estructura existiera irregularidades tipo 4.

Solo en el caso del edificio nº 9 el valor de Φp fue igual a 0.90, para las 71 edificaciones restantes el valor de Φp fue igual a 1.

3.2.3.2. Coeficiente de configuración estructural en elevación ϕE

Los valores de φE para las 72 edificaciones, se determinaron "a partir del análisis de las características de regularidad e irregularidad en elevación de la estructura" (NEC, 2011), las cuales son de 3 tipos:

Tipo 1 – Piso flexible, $\varphi Ei = 0.9$

Tipo 2 – Distribución de masa, $\varphi Ei = 0.9$

Tipo 3 – Irregularidad geométrica, $\varphi Ei = 0.9$

Se utilizó la expresión:

$$\varphi E = \varphi E A * \varphi E B$$

En donde:

 ϕEA , el mínimo valor ΦEI de cada piso i de la estructura.

 ϕEB = En el caso de que en la estructura existiera irregularidades tipo 2 y/3.

Se obtuvieron los siguientes valores de ΦE : ver tabla # 11.

Edificio	Factores de configuración	Edificio	Factores de configuración
Nº	ΦЕ	Nº	ΦЕ
1	1.0	37	0.9
2	1.0	38	1.0
3	1.0	39	1.0
4	1.0	40	1.0
5	1.0	41	1.0
6	0.9	42	1.0
7	1.0	43	1.0
8	1.0	44	1.0
9	0.9	45	1.0
10	1.0	46	1.0
11	1.0	47	1.0
12	1.0	48	1.0
13	1.0	49	1.0
14	1.0	50	0.9
15	1.0	51	1.0
16	0.9	52	1.0
17	0.9	53	1.0
18	1.0	54	1.0
19	1.0	55	1.0
20	1.0	56	1.0
21	1.0	57	1.0
22	1.0	58	1.0
23	1.0	59	1.0
24	1.0	60	1.0
25	1.0	61	0.9
26	0.9	62	1.0
27	1.0	63	1.0
28	1.0	64	1.0
29	1.0	65	1.0
30	1.0	66	1.0
31	1.0	67	1.0
32	1.0	68	1.0
33	1.0	69	1.0
34	1.0	70	1.0
35	1.0	71	1.0
36	1.0	72	1.0

Tabla 11 Coeficiente de configuración estructural en elevación φΕ. Fuente: Elaborado por el autor.

3.2.4. Procedimiento de cálculo de fuerzas sísmicas estáticas

3.2.4.1. Tipo de uso, destino e importancia de la edificación, coeficiente I

Las estructuras están categorizadas en tres tipos: ver tabla # 12.

Categoría	Tipo de uso, destino e importancia	Factor
Edificaciones esenciales y/o peligrosas	Hospitales, clínicas, Centros de salud o de emergencia sanitaria. Instalaciones militares, de policía, bomberos, defensa civil. Garajes o estacionamientos para vehículos y aviones que atienden emergencias. Torres de control aéreo. Estructuras de centros de telecomunicaciones u otros centros de atención de emergencias. Estructuras que albergan equipos de generación y distribución eléctrica. Tanques u otras estructuras utilizadas para depósito de agua u otras substancias anti-incendio. Estructuras que albergan depósitos tóxicos, explosivos, químicos u otras substancias peligrosas.	1.5
Estructuras de ocupación especial	Museos, iglesias, escuelas y centros de educación o deportivos que albergan más de trescientas personas. Todas las estructuras que albergan más de cinco mil personas. Edificios públicos que requieren operar	1.3
Otras Estructuras	Todas las estructuras de edificación y otras que no clasifican dentro de las categorías anteriores	1.0

Tabla 12 Tipo de uso, destino e importancia de la edificación, coeficiente I. Fuente: Norma Ecuatoriana de La construcción, Cap. 2.

De acuerdo a la tabla anterior se definieron los factores de I para las 72 edificaciones, dando como resultado que para todas las edificaciones el valor de I es igual a 1.

3.2.4.2. Carga reactiva definida, W

"La carga sísmica W representa la carga reactiva por sismo y es igual a la carga muerta total de la estructura más un 25% de la carga viva de piso" (NEC, 2011). Para la obtención del valor de carga viva, se determinó el uso de cada edificación y mediante la tabla 1.2. Sobrecargas mínimas uniformemente distribuidas, Lo y concentradas, Po, de la NEC 2011 capitulo 1, se obtuvieron los valores de carga viva.

Para la determinación de la carga muerte se determinó el tipo de material de cada edificación y su peso unitario se obtuvo mediante la tabla 1.1. Pesos unitarios de materiales de construcción de la NEC 2011 capítulo 1, se obtuvieron las secciones de sus elementos estructurales con lo cual se calculó la carga muerta de cada edificación, ver en la tabla 13:

Ed	columnas				Vigas						
if.	Altura (h)	Base (b)	Longitud (L)	Can t. (U)	Peso (kgf/m 3)	Altura (h)			Longitud (L)	Cant . (U)	Peso (kgf/m3)
	0.4	0.4	10	15	57600	0.35		0.3	5 3	36	31752
			L	osa		Cargas					
1	Altura (h)	Base (b)	Espesor	r	Cant. (U)	Peso (kg	f/m	13)	Peso total	WD	WL
	16.5	9.7	0.12		3	13828	3.2		227635.2	254095	365059

Tabla 13 Cálculo de cargas Viva y muerta. Fuente: Elaborado por el autor.

Los valores obtenidos de W son los siguientes: ver tabla # 14.

Edif.	Carga Reactiva	Carga muerta	Carga Viva	Edif.	Carga Reactiva	Carga muerta	Carga Viva
Nº	W(kgf)	WD (kgf)	WL(kgf)	Nº	W(kgf)	WD (kgf)	WL(kgf)
1	345360.13	254095.20	365059.71	37	72499.55	64584.00	31662.19
2	164429.33	136884.60	110178.91	38	17278.24	13878.00	13600.97
3	275046.47	230072.40	179896.29	39	20069.48	14976.00	20373.93
4	133971.48	114908.40	76252.34	40	18391.54	14976.00	13662.16
5	123094.21	105141.60	71810.46	41	15843.92	12150.00	14775.69
6	366239.51	309147.84	228366.67	42	14980.05	9000.00	23920.20
7	353118.42	291033.00	248341.69	43	23511.67	18900.00	18446.67
8	219853.77	182226.24	150510.11	44	46127.20	22032.00	96380.80
9	265421.37	226683.44	154951.72	45	7792.86	6300.00	5971.46
10	19967.16	16416.00	14204.65	46	9702.99	8100.00	6411.98
11	8217.33	6390.00	7309.33	47	50518.74	46425.60	16372.56
12	8274.44	6390.00	7537.74	48	67887.66	64120.32	15069.37
13	15381.01	10260.00	20484.06	49	170291.25	154116.00	64700.99
14	206667.26	191448.00	60877.06	50	84994.47	79488.00	22025.87
15	188766.14	173088.00	62712.55	51	166738.76	148385.09	73414.67
16	57958.44	52350.00	22433.76	52	210639.27	191559.36	76319.64
17	175178.20	151958.69	92878.04	53	33468.29	29600.00	15473.17
18	33195.83	27024.00	24687.33	54	111777.75	91301.93	81903.28
19	205156.36	179584.32	102288.14	55	109359.93	98748.43	42445.99
20	12305.73	11202.40	4413.33	56	25070.11	21858.00	12848.42
21	16989.78	12450.00	18159.11	57	64934.37	55481.60	37811.08
22	745853.06	611583.36	537078.82	58	218421.33	190336.51	112339.28
23	198919.69	183420.00	61998.75	59	133693.02	125855.61	31349.62
24	34921.77	31572.00	13399.07	60	127635.02	116928.00	42828.08
25	169566.12	144982.80	98333.27	61	181810.36	162394.56	77663.22
26	294270.99	258595.20	142703.17	62	284204.52	237216.00	187954.09
27	203200.39	184478.40	74887.96	63	22154.53	18300.00	15418.11
28	22542.60	12060.00	41930.40	64	505093.01	422496.00	330388.05
29	24318.98	14400.00	39675.93	65	130681.48	110124.00	82229.92
30	24200.79	17850.00	25403.17	66	181599.39	146358.00	140965.57
31	65416.41	58501.20	27660.82	67	23049.97	20052.00	11991.86
32	451300.66	411140.16	160642.01	68	177532.59	142291.20	140965.57
33	238604.81	218348.35	81025.83	69	42778.31	28094.40	58735.65
34	184729.12	171513.60	52862.09	70	34479.93	22732.80	46988.52
35	84835.64	74459.18	41505.84	71	16292.37	11887.20	17620.70
36	11191.07	7800.00	13564.27	72	178263.15	146448.00	127260.58

Tabla 14 Carga Reactiva, W. Fuente: Elaborado por el autor.

3.2.4.3. Factor de reducción de respuesta estructural, R

Se seleccionó el sistema estructural utilizado en cada una de las 72 edificaciones, de entre 2 grupos, los sistemas estructurales dúctiles y los sistemas estructurales de ductilidad limitada, los cuales se encuentran descritos en la Tabla # 15. Los resultados obtenidos, Ver tabla #16.

Valores del coeficiente de reducción de respuesta estructural R, Sistemas Estructurales Dúctiles					
Pórticos resistentes a momentos					
Tipo	Factor				
Pórticos especiales sismo resistentes, de hormigón armado con vigas descolgadas.	6				
Pórticos especiales sismo resistentes, de acero laminado en caliente o con elementos armados de placas.	6				
Pórticos con columnas de hormigón armado y vigas de acero laminado en caliente.	6				
Valores del coeficiente de reducción de respuesta estructural R, Sistemas					
Estructurales de Ductilidad Limitada					
Pórticos resistentes a momento					
Tipo	Factor				
Hormigón Armado con secciones de dimensión menor a la especificada en el capítulo 4, limitados a viviendas de hasta 2 pisos con luces de hasta 4 metros.	3				
Estructuras de acero conformado en frío, aluminio, madera, limitados a 2 pisos.	3				

Tabla 15 Factor de reducción de respuesta estructural, R. Fuente: (NEC, 2011)

Edificio	Factor de reducción	Edificio	Factor de reducción	
Nº	R	Nº	R	
1	6	37	3	
2	6	38	6	
3	3	39	3	
4	6	40	3	
5	6	41	3	
6	6	42	3	
7	3	43	3	
8	3	44	6	
9	3	45	3	
10	6	46	3	
11	3	47	3	
12	3	48	3	
13	6	49	3	
14	6	50	3	
15	6	51	6	
16	6	52	3	
17	6	53	3	
18	3	54	3	
19	6	55	6	
20	3	56	3	
21	3	57	3	
22	6	58	6	
23	6	59	6	
24	3	60	6	
25	3	61	6	
26	6	62	6	
27	6	63	3	
28	6	64	6	
29	6	65	6	
30	3	66	3	
31	3	67	3	
32	6	68	3	
33	6	69	6	
34	6	70	6	
35	3	71	6	
36	3	72	3	

Tabla 16 Factor de reducción de respuesta estructural, R. Fuente: Elaborada por el autor.

3.2.4.4. Coeficiente de diseño sísmico

El coeficiente de diseño sísmico para cada edificación se lo determino mediante la siguiente formula: ver resultados tabla # 17.

$$Cs=(I * Sa) / (R * \varphi P * \varphi E)$$

En donde:

I Factor de importancia definido en 3.2.4.1.

Sa "El espectro de respuesta elástico de aceleraciones expresado como fracción de la aceleración de la gravedad *Sa*" (NEC, 2011), definida en 3.2.2.1.

R Factor de reducción de respuesta estructural definido en 3.2.4.3.

φP, φE Factores de configuración estructural en planta y elevación definidos en 3.2.3.1. y 3.2.3.2.

	Aceleración espectral	Factor de Importancia	Factor de reducción	Factores de configuración	Factores de configuración	Coeficiente Sísmico
N°	Sa	I	R	ФР	ФЕ	Cs
1	0.79	1.0	6	1.0	1.0	0.132
2	0.79	1.0	6	1.0	1.0	0.132
3	0.79	1.0	3	1.0	1.0	0.263
5	0.79 0.79	1.0 1.0	6	1.0 1.0	1.0 1.0	0.132 0.132
6	0.79	1.0	6	1.0	0.9	0.146
7	0.79	1.0	3	1.0	1.0	0.263
8	0.79	1.0	3	1.0	1.0	0.263
9	0.79	1.0	3	0.9	0.9	0.325
10	0.79	1.0	6	1.0	1.0	0.132
11	0.79	1.0	3	1.0	1.0	0.263
12	0.79 0.79	1.0	3	1.0	1.0	0.263
13 14	0.79	1.0	6	1.0	1.0	0.132 0.132
15	0.79	1.0	6	1.0	1.0	0.132
16	0.79	1.0	6	1.0	0.9	0.132
17	0.79	1.0	6	1.0	0.9	0.146
18	0.79	1.0	3	1.0	1.0	0.263
19	0.79	1.0	6	1.0	1.0	0.132
20	0.79	1.0	3	1.0	1.0	0.263
21	0.79	1.0	3	1.0	1.0	0.263
22	0.79	1.0	6	1.0	1.0	0.132
23	0.79	1.0	6	1.0	1.0	0.132
24	0.79	1.0	3	1.0	1.0	0.263
25	0.79 0.79	1.0	3	1.0	1.0	0.263
26 27	0.79	1.0	6	1.0	0.9 1.0	0.146 0.132
28	0.79	1.0	6	1.0	1.0	0.132
29	0.79	1.0	6	1.0	1.0	0.132
30	0.79	1.0	3	1.0	1.0	0.263
31	0.79	1.0	3	1.0	1.0	0.263
32	0.79	1.0	6	1.0	1.0	0.132
33	0.79	1.0	6	1.0	1.0	0.132
34	0.79	1.0	6	1.0	1.0	0.132
35	0.79	1.0	3	1.0	1.0	0.263
36	0.79 0.79	1.0	3 3	1.0	1.0	0.263 0.293
37 38	0.79	1.0	6	1.0 1.0	0.9 1.0	0.132
39	0.79	1.0	3	1.0	1.0	0.263
40	0.79	1.0	3	1.0	1.0	0.263
41	0.79	1.0	3	1.0	1.0	0.263
42	0.79	1.0	3	1.0	1.0	0.263
43	0.79	1.0	3	1.0	1.0	0.263
44	0.79	1.0	6	1.0	1.0	0.132
45	0.79	1.0	3	1.0	1.0	0.263
46	0.79	1.0	3	1.0	1.0	0.263
47	0.79	1.0	3	1.0	1.0	0.263
48 49	0.79 0.79	1.0 1.0	3 3	1.0 1.0	1.0	0.263 0.263
50	0.79	1.0	3	1.0	0.9	0.293
51	0.79	1.0	6	1.0	1.0	0.132
52	0.79	1.0	3	1.0	1.0	0.263
53	0.79	1.0	3	1.0	1.0	0.263
54	0.79	1.0	3	1.0	1.0	0.263
55	0.79	1.0	6	1.0	1.0	0.132
56	0.79	1.0	3	1.0	1.0	0.263
57	0.79	1.0	3	1.0	1.0	0.263
58 50	0.79	1.0	6	1.0	1.0	0.132
59 60	0.79 0.79	1.0	6	1.0	1.0	0.132 0.132
61	0.79	1.0	6	1.0	0.9	0.146
62	0.79	1.0	6	1.0	1.0	0.132
63	0.79	1.0	3	1.0	1.0	0.263
64	0.79	1.0	6	1.0	1.0	0.132
65	0.79	1.0	6	1.0	1.0	0.132
66	0.79	1.0	3	1.0	1.0	0.263
67	0.79	1.0	3	1.0	1.0	0.263
68	0.79	1.0	3	1.0	1.0	0.263
69	0.79	1.0	6	1.0	1.0	0.132
70	0.79	1.0	6	1.0	1.0	0.132 0.132
71	0.79	1.0				

Tabla 17 Coeficiente de Diseño Sísmico, Cs. Fuente: Elaborada por el autor.

3.2.4.5. Cortante basal de diseño

El cortante basal de diseño (V), aplicado a cada edificación en una dirección específica, se determinó mediante la siguiente formula: ver tabla #18.

En donde:

$$V = \frac{I S_a}{R \phi_P \phi_E} W$$

I Factor de importancia defin

W La carga reactiva definida en 3.2.4.2.

Sa "El espectro de respuesta elástico de aceleraciones expresado como fracción de la aceleración de la gravedad *Sa*" (NEC, 2011) definida en 3.2.2.1.

R Factor de reducción de respuesta estructural definido en 3.2.4.3.

φP, φE Factores de configuración estructural en planta y elevación definidos en 3.2.3.1. y 3.2.3.2.

Edif.	Cortante basal de diseño	Cortante basal de diseño	Cortante basal de diseño	Edif.	Cortante basal de diseño	Cortante basal de diseño	Cortante basal de diseño
Nº	V (kgf)	V (KN/m2)	V (Kgf/m2)	Nº	V (kgf)	V (KN/m2)	V (Kgf/m2)
1	45472.41677	2.841138192	284.1138192	37	21212.83045	5.892452902	589.2452902
2	21649.86143	1.457903126	145.7903126	38	2274.968755	0.361106152	36.11061517
3	72428.90475	5.487038238	548.7038238	39	5284.963721	0.83888313	83.88831303
4	17639.57882	2.138130767	213.8130767	40	4843.10539	0.768746887	76.87468873
5	16207.40482	2.455667396	245.5667396	41	4172.232788	0.851476079	85.14760793
6	53579.48349	4.638916319	463.8916319	42	3944.746303	0.805050266	80.50502659
7	92987.85103	7.044534169	704.4534169	43	6191.405531	0.982762783	98.27627827
8	57894.82564	3.859655043	385.9655043	44	6073.41476	0.552128615	55.21286145
9	86289.25056	7.989745422	798.9745422	45	2052.120994	0.855050414	85.50504143
10	2629.009625	0.536532577	53.65325766	46	2555.121724	1.064634051	106.4634051
11	2163.897283	0.44161169	44.16116904	47	13303.26843	4.22325982	422.325982
12	2178.934698	0.444680551	44.46805506	48	17877.08421	2.482928362	248.2928362
13	2025.166952	0.321455072	32.14550717	49	44843.36209	6.228244734	622.8244734
14	27211.18982	2.519554613	251.9554613	50	24868.75162	9.210648747	921.0648747
15	24854.20801	2.958834287	295.8834287	51	21953.93623	3.801547399	380.1547399
16	8479.10499	1.177653471	117.7653471	52	55468.34112	5.135957511	513.5957511
17	25627.92144	3.163940919	316.3940919	53	8813.317276	1.39893925	139.893925
18	8741.569193	1.387550666	138.7550666	54	29434.80655	1.783927669	178.3927669
19	27012.25345	3.334846105	333.4846105	55	14399.05749	0.959937166	95.99371661
20	3240.509675	0.900141576	90.01415763	56	6601.794599	1.047903905	104.7903905
21	4473.974499	0.91305602	91.30560203	57	17099.38391	1.583276288	158.3276288
22	98203.98686	4.546480873	454.6480873	58	28758.80871	1.917253914	191.7253914
23	26191.09205	3.637651673	363.7651673	59	17602.91396	1.303919553	130.3919553
24	9196.06551	1.702975094	170.2975094	60	16805.27766	1.600502635	160.0502635
25	44652.4112	2.976827413	297.6827413	61	26598.18297	2.462794719	246.2794719
26	43050.75615	4.305075615	430.5075615	62	37420.26221	3.89794398	389.794398
27	26754.71797	3.303051602	330.3051602	63	5834.025518	1.852071593	185.2071593
28	2968.109144	0.366433228	36.64332276	64	66503.91341	2.955729485	295.5729485
29	3201.9995	0.304952333	30.49523334	65	17206.39472	2.048380323	204.8380323
30	6372.875378	0.708097264	70.80972642	66	47821.17331	4.98137222	498.137222
31	17226.32011	1.59502964	159.502964	67	6069.824292	2.477479303	247.7479303
32	59421.25401	3.301180778	330.1180778	68	46750.24931	4.869817637	486.9817637
33	31416.30007	3.740035722	374.0035722	69	5632.47794	0.469373162	46.93731617
34	24322.66775	3.378148298	337.8148298	70	4539.857552	0.472901828	47.29018283
35	22340.05177	1.551392484	155.1392484	71	2145.162582	0.595878495	59.5878495
36	2946.980783	0.467774728	46.77747275	72	46942.62841	3.610971416	361.0971416

Tabla 18 Cortante Basal de Diseño, V. Fuente: Elaborado por el autor.

3.3. Indicadores de estimación de vulnerabilidad.

La estimación de la vulnerabilidad de las edificaciones objeto de este estudio, depende de múltiples factores: material de construcción predominante,

antigüedad, tipología constructiva y sistema estructural, altura de edificación, estado de conservación, impacto entre edificios adyacentes, irregularidad en planta, irregularidad en elevación. Todos estos factores fueron verificados en visitas realizadas al sitio objeto de este estudio.

Estos parámetros tienen indicadores, los cuales han sido agrupados de la siguiente manera:

A. Material de construcción predominante:

De acuerdo a las visitas realizadas a sitio se pudo constatar la existencia de 3 tipos de material de construcción por su preponderancia entre las 72 edificaciones que se encuentran en la zona de estudio. Ver tabla #19.

Material de construcción	Breve descripción	Imagen referencial
Hormigón armado	Edificaciones con columnas, vigas y losas de hormigón armado, y muros de ladrillo o bloque de cemento.	
Mixta	Edificaciones con columnas de Madera y bloques de ladrillo o cemento cubiertos con hormigón, vigas y losa de hormigón armado.	
Acero	Edificaciones con columnas y vigas de acero, y losa colaborante de hormigón armado.	FHONDA

Tabla 19 Material de Construcción Predominante. Fuente: Elaborada por el autor.

B. Sistema constructivo de cada edificación:

Para esta investigación se simplifico los posibles tipos de sistemas estructurales de acuerdo a lo constado en las visitas realizadas en sitio, en lo cual se determinó que

en su mayoría los tipos de sistemas estructurales utilizados se dividen en Dúctiles o de Ductilidad Limitada: ver tabla # 20.

Tipo	Breve descripción	Imagen referencial
Sistemas Estructurales Dúctiles	Pórticos Resistente a Momentos	
Sistemas Estructurales de Ductilidad Limitada	Pórticos Resistente a Momentos	AND

Tabla 20 Sistema Constructivo. Fuente: Elaborada por el autor.

C. Estado de conservación de edificación:

Para poder estimar con mayor detalle la vulnerabilidad de las edificaciones objeto de este estudio, se determinó el estado de conservación de cada una de las edificaciones mediante visitas realizadas al sitio, clasificándolo de la siguiente manera. Ver tabla # 21.

Estado de conservación	Breve descripción	Imagen referencial
Bueno	Edificaciones que se encuentran en óptimas condiciones, los cuales no presentan daño estructural alguno.	
Regular	Edificaciones que no se le ha dado mantenimiento alguno a lo largo de los años, presenta fisuras en paredes, columnas o vigas.	CONGRATURIA SKIRI LASONI PORTO CA. SKI
Malo	Edificaciones que se encuentran deterioradas, con grietas en elementos estructurales como columnas, vigas y losa.	

Tabla 21 Estado de Conservación. Fuente: Elaborada por el autor.

D. Altura de edificación:

Mediante visitas hechas en sitio se realizó la medición de la altura de cada edificio, clasificándolos de acuerdo al número de pisos y tipo de uso de la siguiente forma: ver tabla # 22.

Nº de Pisos	Uso	Imagen referencial
1 Piso	Vivienda y/o local comerciales.	Form A figo
2 Pisos	Vivienda y/o local comerciales.	
3 Pisos	Vivienda y/o local comerciales.	
4 Pisos o más	Vivienda, oficinas y/o local comerciales.	

Tabla 22 Altura de la edificación. Fuente: Elaborada por el autor.

E. Antigüedad: ver tabla # 23.

Antigüedad (Años)	Breve descripción	Imagen referencial
1 – 34	Edificios construidos con la norma sísmica vigente	HONDA
35 - 45	Edificios construidos con criterios sismo - resistentes básicos	
46 - 50	Edificios construidos sin diseño sísmico	

Tabla 23 Antigüedad. Fuente: Elaborada por el autor.

F. Tipología de las edificaciones

Basados en la metodología utilizada en el proyecto RADIUS, para determinar la vulnerabilidad y estimación de pérdidas en las edificaciones, se clasifico las 72 edificaciones de a acuerdo a la tipología descritas en dicho proyecto que dan un total de 12.

Las 12 tipologías de edificaciones se describen a continuación en la tabla #

24.

TIPOLOGÍA	BREVE DESCRIPCIÓN
A	Madera desde uno (caña, predominante en el grupo) y hasta seis pisos (unas pocas son de tres o más pisos). Con buen estado de conservación, y en su mayoría de uso residencial
В	Mixtas (estructura de madera y paredes de bloque) de uno a seis niveles en buen estado de conservación, principalmente de uso residencial. En su mayor parte son de 1 o 2 pisos.
С	Madera o Mixtas (estructura de madera, con o sin paredes de bloque) de uno a dos niveles y en mal estado de conservación.
D	Madera o Mixtas (estructura de madera, con o sin paredes de bloque) de tres a seis pisos y en mal estado de conservación.
Е	Hormigón, de uno o dos pisos y de uso residencial.
F	Hormigón, de uno o dos pisos y de uso comercial.
G	Hormigón, de tres a seis pisos y de uso residencial.
Н	Hormigón, de tres a seis pisos y de uso comercial
I	Hormigón, de siete a trece pisos.
J	Hormigón, de catorce o más pisos.
K	Acero, de un piso.
L	Acero, de dos o más pisos.

Tabla 24 Tipología de edificaciones. Fuente: (Proyecto RADIUS, 1999)

De acuerdo a la información recopilada de las visitas realizadas al sitio de investigación, se ha clasificado a las 72 edificaciones para las 12 tipologías, obteniéndose la distribución estadística que se explica a continuación y se presenta

en la gráfica # 2. Donde se observa que las principales tipologías predominantes en la zona de estudio son las siguientes: G (31.94%), E (25.00%), F (20.83%).

Así mismo, en la Gráfica # 3, se observan la distribución estadística de las edificaciones no predominantes, que representan el 22.22% del total: H (9.72%), B (6.94%), A (4.17%), L (1.39%).

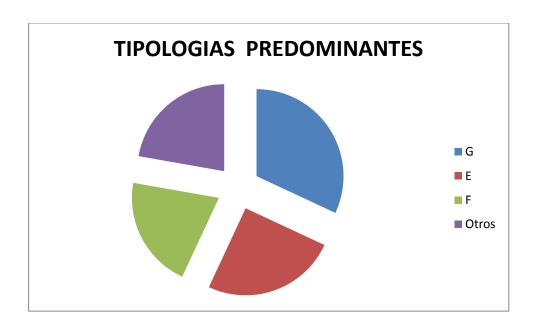


Grafico 2 Tipologías Predominantes. Fuente: Elaborada por el autor

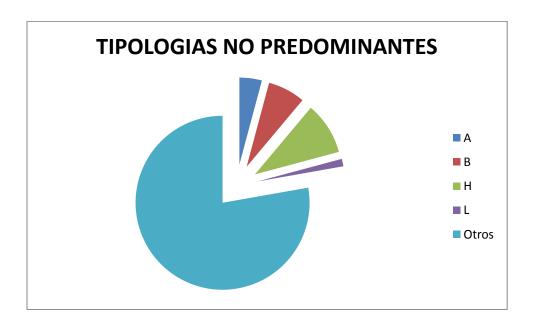


Grafico 3 Tipologías No Predominantes. Fuente: Elaborada por el autor

G. Irregularidad vertical

Ocurre en el caso de existir ejes verticales discontinuos o muros soportados por columnas, piso débil discontinuidad en la resistencia o columnas cortas.

H. Irregularidad en planta

"Una estructura se considera irregular no recomendada cuando existen discontinuidades en los ejes verticales, tales como desplazamientos del plano de acción de elementos verticales del sistema resistente" (NEC, 2011).

I. Pounding: impacto entre edificios

Este factor se refiere al adosamiento que existe entre las edificaciones o el mínimo retiro que poseen entre las edificaciones colindantes. En el caso de producirse un sismo, al no existir una distancia segura entre las edificaciones, las deformaciones horizontales o desplazamientos de los pisos en los edificios producto del sismo dan como resultado el golpe entre edificios, causando daños en los elementos estructurales y no estructurales.

J. Piso suave

"La estructura se considera irregular no recomendada cuando la resistencia del piso es menor que el 70% de la resistencia del piso inmediatamente superior" (NEC, 2011).

K. Proporcionalidad de dimensiones estructurales (columna fuerte - viga débil)

Este factor se refiera a que las dimensiones de las columnas deben ser mayores a las de las vigas que soportan. En el sentido considerado "Las columnas deben ser capaces de resistir fuerzas sísmicas mayores que las vigas con las que se conectan" (Proyecto RADIUS, 1999).

L. Densidad o Redundancia estructural de las plantas: luces entre columnas

Factor que se relaciona con la cantidad de columnas de una edificación y la distancia entre las columnas. Cuando existen distancias muy cortas entre columnas la redundancia es mayor, es lo opuesto en el caso de grandes distancias entre columnas lo cual es malo porque no podrán tomas lar fuerzas generadas por un sismos de forma efectiva.

Los valores obtenidos para los factores de vulnerabilidad en las 72 edificaciones objeto de estudio fueron: ver tabla # 25 y 26.

	FACTORES DE VULNERABILIDAD EN EDIFICACIONES						
Edificio Nº	Material de Construcción	Sistemas Estructurales Dúctiles (D) - Ductilidad Limitada (DL)	Edad (años)	Estado de Conservación	Nº de Pisos	Tipología	
1	Hormigón Armado	Pórticos Resistente a Momentos - D	15	Bueno	4	G	
2	Hormigón Armado	Pórticos Resistente a Momentos - D	17	Bueno	2	F	
3	Hormigón Armado	Pórticos Resistente a Momentos - DL	35	Bueno	4	G	
4	Hormigón Armado	Pórticos Resistente a Momentos - D	21	Bueno	3	G	
5	Hormigón Armado	Pórticos Resistente a Momentos - D	21	Bueno	3	G	
6	Hormigón Armado	Pórticos Resistente a Momentos - D	21	Regular	4	Н	
7	Hormigón Armado	Pórticos Resistente a Momentos - DL	37	Regular	4	G	
8	Hormigón Armado	Pórticos Resistente a Momentos - DL	37	Regular	2	E	
9	Hormigón Armado	Pórticos Resistente a Momentos - DL	37	Regular	3	Н	
10	Hormigón Armado	Pórticos Resistente a Momentos - D	25	Regular	1	E	
11	Hormigón Armado	Pórticos Resistente a Momentos - DL	37	Regular	1	F	
12	Hormigón Armado	Pórticos Resistente a Momentos - DL		Bueno	1	F	
13	Hormigón Armado	Pórticos Resistente a Momentos - D	2	Bueno	1	F	
14	Hormigón Armado	Pórticos Resistente a Momentos - D	20	Bueno	4	G	
15	Hormigón Armado	Pórticos Resistente a Momentos - D	40	Bueno	4	Н	
16	Hormigón Armado	Pórticos Resistente a Momentos - D	30	Bueno	2	Е	
17	Hormigón Armado	Pórticos Resistente a Momentos - D 25 Bueno		Bueno	3	G	
18	Mixto	to Pórticos Resistente a Momentos - DL 42 Mala 2		2	В		
19	Hormigón Armado	Pórticos Resistente a Momentos - D	35	Bueno	4	G	

	FACTORES DE VULNERABILIDAD EN EDIFICACIONES					
Edificio Nº	Material de Construcción	Sistemas Estructurales Dúctiles (D) - Ductilidad Limitada (DL)	Edad (años)	Estado de Conservación	Nº de Pisos	Tipología
20	Mixto	Pórticos Resistente a Momentos - DL	45	Regular	2	В
21	Hormigón Armado	Pórticos Resistente a Momentos - DL	45	Bueno	1	F
22	Hormigón Armado	Pórticos Resistente a Momentos - D	20	Bueno	5	Н
23	Hormigón Armado	Pórticos Resistente a Momentos - D	27	Bueno	4	G
24	Madera	Pórticos Resistente a Momentos - DL	55	Regular	2	Α
25	Acero	Pórticos Resistente a Momentos - DL	6	Bueno	2	L
26	Hormigón Armado	Pórticos Resistente a Momentos - D	10	Bueno	5	Н
27	Hormigón Armado	Pórticos Resistente a Momentos - D	32	Bueno	4	G
28	Hormigón Armado	Pórticos Resistente a Momentos - D	21	Bueno	1	F
29	Hormigón Armado	Pórticos Resistente a Momentos - D	7	Bueno	1	F
30	Hormigón Armado	Pórticos Resistente a Momentos - DL 35		Bueno	1	F
31	Hormigón Armado	Pórticos Resistente a Momentos - DL		Bueno	1	F
32	Hormigón Armado	Pórticos Resistente a Momentos - D	42	Regular	4	G
33	Hormigón Armado	Pórticos Resistente a Momentos - D	42	Regular	4	G
34	Hormigón Armado	Pórticos Resistente a Momentos - D 35 Bueno		Bueno	4	G
35	Mixto	Pórticos Resistente a Momentos - DL	35	Bueno	2	В
36	Madera	Pórticos Resistente a Momentos - DL	45	Mala	1	А
37	Hormigón Armado	Pórticos Resistente a Momentos - DL	40	Regular	4	G
38	Hormigón Armado	Pórticos Resistente a Momentos - D	34	Regular	1	E
39	Hormigón Armado	Pórticos Resistente a Momentos - DL	35	Bueno	1	E
40	Hormigón Armado	Pórticos Resistente a Momentos - DL	35	Bueno	1	Е
41	Hormigón Armado	Pórticos Resistente a Momentos - DL	45	Regular	1	F
42	Hormigón Armado	Pórticos Resistente a Momentos - DL	45	Bueno	1	Е
43	Hormigón Armado	Pórticos Resistente a Momentos - DL	35	Bueno	1	Е
44	Hormigón Armado	Pórticos Resistente a Momentos - D 15 Bu		Bueno	1	F
45	Hormigón Armado	Pórticos Resistente a Momentos - DL 33 Regular		1	Е	
46	Hormigón Armado			Mala	1	Е
47	Hormigón Armado	Pórticos Resistente a Momentos - DL	35	Bueno	3	G
48	Hormigón Armado	Pórticos Resistente a Momentos - DL	36	Bueno	2	E
49	Hormigón Armado	Pórticos Resistente a Momentos - DL	36	Regular	3	G

	FACTORES DE VULNERABILIDAD EN EDIFICACIONES					
Edificio Nº	Material de Construcción	Dúctiles (D) - Ductilidad Limitada		Estado de Conservación	Nº de Pisos	Tipología
50	Hormigón Armado	Pórticos Resistente a Momentos - DL 35 Regular		4	G	
51	Hormigón Armado	Pórticos Resistente a Momentos - D	15	Bueno	4	G
52	Hormigón Armado	Pórticos Resistente a Momentos - DL	45	Bueno	3	G
53	Mixto	Pórticos Resistente a Momentos - DL	35	Regular	1	В
54	Mixto	Pórticos Resistente a Momentos - DL	45	Bueno	2	В
55	Hormigón Armado	Pórticos Resistente a Momentos - D	15	Bueno	2	E
56	Hormigón Armado	Pórticos Resistente a Momentos - DL	45	Mala	1	E
57	Madera	Pórticos Resistente a Momentos - DL	istente a Momentos - DL 45 Mala		2	Α
58	Hormigón Armado	Pórticos Resistente a Momentos - D	15	15 Bueno		G
59	Hormigón Armado	Pórticos Resistente a Momentos - D	7	Bueno	2	E
60	Hormigón Armado	Pórticos Resistente a Momentos - D	15	Bueno	3	G
61	Hormigón Armado	Pórticos Resistente a Momentos - D	15	5 Bueno		F
62	Hormigón Armado	Pórticos Resistente a Momentos - D	23	23 Bueno 4		Н
63	Hormigón Armado	Pórticos Resistente a Momentos - DL	55	55 Bueno 1		F
64	Hormigón Armado	Pórticos Resistente a Momentos - D	15	Bueno	4	Н
65	Hormigón Armado	Pórticos Resistente a Momentos - D	17	Bueno	2	F
66	Hormigón Armado	Pórticos Resistente a Momentos - DL	35	Bueno	4	G
67	Hormigón Armado	Pórticos Resistente a Momentos - DL	35	Regular	1	E
68	Hormigón Armado	Pórticos Resistente a Momentos - DL	45	Bueno	3	G
69	Hormigón Armado	Pórticos Resistente a Momentos - D	orticos Resistente a Momentos - D 30 Regular 2		E	
70	Hormigón Armado	Pórticos Resistente a Momentos - D	mentos - D 2 Bueno 2 I		E	
71	Hormigón Armado	Pórticos Resistente a Momentos - D	3.8	Bueno	1	F
72	Hormigón Armado	Pórticos Resistente a Momentos - D	35	Bueno	2	E

Tabla 25 Factores de Vulnerabilidad en Edificaciones, 1. Fuente: Elaborada por el autor.

		FACTORE	S DE VULNERA	BILIDAD E	N EDIFIC	CACIONES	
Edif.	Alt. de la edifi. (m)	Irregularidad en planta	Irregularidad en elevación	Pounding # de lados	Piso suave	Proporcionalidad de dimensiones	Redundancia
1	10	NO	NO	2	NO	NO	NO
2	6.3	NO	NO	3	NO	NO	SI
3	9	NO	NO	3	NO	NO	NO
4	9	NO	NO	3	SI	NO	SI
5	7.5	NO	NO	3	NO	NO	NO
6	12	NO	SI	3	SI	NO	SI
7	10.5	NO	SI	2	SI	SI	SI
8	6.5	NO	NO	2	SI	NO	SI
9	10	SI	SI	2	SI	NO	SI
10	3	NO	NO	3	NO	NO	NO
11	2.5	NO	NO	3	NO	NO	NO
12	2.5	NO	NO	3	NO	NO	NO
13	2.5	NO	NO	3	NO	NO	NO
14	9.6	NO	NO	2	NO	NO	NO
15	11	NO	NO	3	SI	NO	SI
16	6.5	NO	SI	3	SI	SI	SI
17	10	NO	SI	2	SI	NO	NO
18	6.5	NO	NO	3	SI	NO	NO
19	11	NO	NO	3	NO	NO	NO
20	6.3	NO	NO	3	SI	NO	NO
21	3.5	NO	NO	3	NO	NO	NO
22	11	NO	NO	3	NO	NO	NO
23	11.5	NO	NO	3	SI	NO	SI
24	5.5	NO	NO	3	SI	NO	NO
25	7	NO	NO	2	NO	NO	NO
26	12	NO	SI	3	SI	NO	SI
27	11	NO	NO	3	NO	NO	SI
28	3.5	NO	NO	2	NO	NO	NO
29	3.5	NO	NO	3	NO	NO	NO
30	3.5	NO	NO	3	NO	NO	NO
31	4	NO	NO	3	NO	NO	NO
32	11	NO	NO	3	NO	NO	NO
33	9	NO	NO	2	SI	NO	NO
34	11.5	NO	NO	3	NO	NO	NO
35	6.8	NO	NO	2	SI	NO	SI
36	3	NO	NO	3	NO	NO	NO

Edif.	Alt. de la edifi. (m)	Irregularidad en planta	Irregularidad en elevación	Pounding # de lados	Piso suave	Proporcionalidad de dimensiones	Redundancia
37	8	NO	SI	3	SI	NO	SI
38	3	NO	NO	3	NO	NO	NO
39	3	NO	NO	3	NO	NO	NO
40	3	NO	NO	3	NO	NO	NO
41	3	NO	NO	3	NO	NO	NO
42	3	NO	NO	2	NO	NO	NO
43	5	NO	NO	3	NO	NO	NO
44	4.5	NO	NO	2	NO	NO	NO
45	3	NO	NO	3	NO	NO	NO
46	3.5	NO	NO	3	NO	NO	NO
47	5.5	NO	NO	3	SI	NO	SI
48	5.3	NO	NO	3	NO	NO	SI
49	8.5	NO	NO	3	SI	NO	SI
50	10.5	NO	SI	3	SI	NO	SI
51	11.5	NO	NO	2	SI	NO	SI
52	9	NO	NO	3	SI	NO	NO
53	4	NO	NO	3	NO	NO	NO
54	6.5	NO	NO	3	SI	NO	NO
55	5.5	NO	NO	3	NO	NO	NO
56	3	NO	NO	3	NO	NO	NO
57	7	NO	NO	3	SI	SI	SI
58	10.1	NO	NO	3	SI	NO	SI
59	5.5	NO	NO	3	NO	NO	NO
60	7.7	NO	NO	3	SI	NO	NO
61	4	NO	SI	2	NO	NO	NO
62	12.5	NO	NO	3	SI	NO	SI
63	4	NO	NO	3	NO	NO	NO
64	11.5	NO	NO	2	NO	NO	NO
65	6	NO	NO	3	NO	NO	NO
66	9	NO	NO	3	NO	NO	NO
67	4	NO	NO	3	NO	NO	NO
68	9	NO	NO	3	SI	NO	SI
69	3.8	NO	NO	3	NO	NO	NO
70	3.8	NO	NO	3	NO	NO	NO
71	3.8	NO	NO	2	NO	NO	NO
72	6	NO	NO	3	SI	SI	SI

Tabla 26 Clase. Fuente: Proyecto RADIUS 1999.

3.3.1. Evaluación de los Índices de Vulnerabilidad

Para encontrar los Índices de Vulnerabilidad de las edificaciones en estudio, siguiendo la metodología utilizada en el proyecto RADIUS, se han seleccionado 8 factores de la vulnerabilidad que son representativos de la propiedad sísmica de las edificaciones investigadas, los cuales han sido detallados previamente y son: Altura de la edificación, número de pisos, estado de conservación de edificación, irregularidad vertical, irregularidad en planta, piso suave y golpe entre edificaciones colindantes.

De acuerdo a la metodología usada en dicho estudio, para cada elemento de los ocho factores seleccionados se asigna una "Clase" y un "Factor de Peso". Ver tabla # 27 y 28.

CLASE				
Calificación Vulnerabilidad				
0	Baja			
10	Media			
20	Alta			

Tabla 27 Clase. Fuente: Proyecto RADIUS 1999.

FACTOR DE PESO				
Calificación Importancia				
1.00	Baja			
1.5	Media			
2.00	Alta			

Tabla 28 Factores de Peso. Fuente: Proyecto RADIUS 1999.

En la tabla # 29 se presentan los factores de vulnerabilidad considerados, la Clase asignada, y el Factor de Peso asignado para cada uno de los ocho factores de vulnerabilidad.

	Índice de Vulnerabilidad				
	Factor de Vulnerabilidad		Clase	Factor de	
	2 30002 30	1	2	3	Peso
1	Proporcionalidad de dimensiones estructurales	0	10	20	1.00
2	Redundancia	0	10	20	1.00
3	Número de pisos	0	10	20	1.50
4	Estado de conservación de edificación	0	10	20	2.00
5	Irregularidad vertical	0	10	20	2.00
6	Irregularidad en planta	0	10	20	1.50
7	Piso suave	0	10	20	2.00
8	Pounding	0	10	20	1.50

Tabla 29 Clase. Índice de Vulnerabilidad, Factores Peso, Clase y Vulnerabilidad. Fuente: Proyecto RADIUS 1999.

3.3.2. Formulario de Levantamiento Visual de Datos

En la tabla #30, se presenta el formulario que se ha utilizado para el levantamiento de la información de las edificaciones localizadas dentro de la zona

norte de la parroquia Camilo Andrade, delimitada al norte por la calle 24 de Mayo, al sur por la calle Gabriel García Moreno, al este con la calle Pedro Carbo y al oeste con la calle Ernesto Seminario objeto de este estudio. Se presenta como ejemplo el levantamiento realizado al edificio Nº 2 Ubicado en la calle García Moreno, entre las calles Ernesto Seminario y Simón Bolívar. En los anexos se presentan la totalidad de los 72 formularios de las inspecciones realizadas. Ver figuras (8 – 79).

RIESGO SÍSMICO EN EDIFICACIONES DE LA ZONA NORTE DE LA CIUDAD DE MILAGRO, ENTRE LAS CALLES 24 DE MAYO – GABRIEL GARCIA MORENO – PEDRO CARBO – ERNESTO SEMINARIO

FORMULARIO DE LEVANTAMIENTO VISUAL DE DATOS

1. Información General						
Edad (Años)		17				
	C	alle (García Moreno, Entre	e las		
Dirección:		calle	es Ernesto Seminario	y		
		Simón Bolívar				
Edificación Nº:	02					
Inspector:	Juan Vargas Centanaro					
2. Material de Construcción						
Hormigón Armad	do	X	Mixto			
Acero			Madera			

Bueno		X	Regular					Mala	
6. Estado de conservación									
Número de Pisos =			2	A	ltura	de la edi	ficación =	6.3	
	5. Dimensiones principales								
Pórticos Resistente a Momentos Muros Estructurales Portantes									
	4.2.	Sistema	a estructi	ırale	s de Ductili	dad	Limitada	a	
Sistemas Diiales		os Resistente a Jomentos		X					
	4.1.Sistema estructurales Dúctiles Otros Sistemas								
		11	Sistema	octru	eturolos Di	íctilo	NC .		
Residencial	X	Comer	rcial	X	Educación Gobierno				
	3. Uso del Edificio								
Acero		Made	zia –						

Tabla 30 Formulario de Levantamiento Visual de Datos. Fuente: Elaborado por el autor.

3.3.3. Calculo de los Índices de Vulnerabilidad

El Índice de Vulnerabilidad Total de un edificio se calcula mediante la multiplicación de los tres factores de vulnerabilidad descritos en la tabla # 29, el "Factor de Vulnerabilidad", el "Factor de Clase" y el "Factor de peso". Al final la suma de todos los resultados obtenidos para los ocho "Factores de Vulnerabilidad" obteniendo como resultado el "Índice de Vulnerabilidad Total".

El cálculo de los Índices de Vulnerabilidad se presenta en las tablas # 31, para todas las edificaciones ilustradas en el Anexo de este estudio. Ver figuras (8 – 79).

				Calculo de Í	ndice de Vuln	erabilida	d		
Edif. N°	Estado de Conservació n	Nº de Pisos	Irregularidad en planta	Irregularidad Vertical	Pounding	Piso suave	Proporcionalidad de dimensiones	Redundancia	Índice de Vulnerabilidad
1	0	20	0	0	10	0	0	0	45
2	0	10 20	0	0	20 20	0	0	10 0	55
3	0	10	0	0	20	10	0	10	60 75
5	0	10	0	0	20	0	0	0	45
6	10	20	0	20	20	20	0	10	170
7 8	10 10	20 10	0	20	10 10	10 10	10 0	10 10	145 80
9	10	10	10	10	10	20	0	10	135
10	10	0	0	0	20	0	0	0	50
11	10	0	0	0	20	0	0	0	50
12	0	0	0	0	20 20	0	0	0	30 30
14	0	20	0	0	10	0	0	0	45
15	0	20	0	0	20	10	0	10	90
16	0	10 10	0	10	20 10	20 10	10 0	10	125
17 18	20	10	0	10 0	20	10	0	0	70 105
19	0	20	0	0	20	0	0	0	60
20	10	10	0	0	20	10	0	0	85
21	0	0	0	0	20	0	0	0	30
22	0	20 20	0	0	20 20	0 10	0	0 10	60 90
24	10	10	0	0	20	10	0	0	85
25	0	10	0	0	10	0	0	0	30
26	0	20	0	20	20	10	0	10	130
27 28	0	20	0	0	20 10	0	0	10 0	70 15
29	0	0	0	0	20	0	0	0	30
30	0	0	0	0	20	0	0	0	30
31	0	0	0	0	20	0	0	0	30
32	10 10	20 20	0	0	20 10	0 10	0	0	80 85
33 34	0	20	0	0	20	0	0	0	60
35	0	10	0	0	10	10	0	10	60
36	20	0	0	0	20	0	0	0	70
37 38	10 10	20	0	20	20 20	20	0	10	170 50
39	0	0	0	0	20	0	0	0	30
40	0	0	0	0	20	0	0	0	30
41	10 0	0	0	0	20 10	0	0	0	50
42	0	0	0	0	20	0	0	0	15 30
44	0	0	0	0	10	0	0	0	15
45	10	0	0	0	20	0	0	0	50
46	20	0	0	0	20	0	0	0	70
47 48	0	10 10	0	0	20	10	0	10 10	75 55
49	10	10	0	0	20	10	0	10	95
50	10	20	0	20	20	20	0	10	170
51 52	0	20 10	0	0	10 20	10 10	0	10	75 65
53	10	0	0	0	20	0	0	0	50
54	0	10	0	0	20	10	0	0	65
55	0	10	0	0	20	0	0	0	45
56 57	20	0 10	0	0	20 20	10	0 10	10	70 125
58	0	10	0	0	20	10	0	10	75
59	0	10	0	0	20	0	0	0	45
60	0	10	0	0 10	20 10	10	0	0	65
62	0	0 20	0	0	20	20	0	10	35 110
63	0	0	0	0	20	0	0	0	30
64	0	20	0	0	10	0	0	0	45
65	0	10 20	0	0	20 20	0	0	0	45 60
66	10	0	0	0	20	0	0	0	50
68	0	10	0	0	20	10	0	10	75
69	10	10	0	0	20	0	0	0	65
70 71	0	10	0	0	20 10	0	0	0	45 15
71	0	10	0	0	20	10	10	10	85
/ <u>r</u>		10 - 1						T71 - 1 1	

Tabla 31 Calculo de Índices de Vulnerabilidad. Fuente: Elaborada por el autor.

3.3.4. Función de daño

"Las "Funciones de Daño", permiten obtener el Porcentaje o Grado de Daño esperado durante la ocurrencia de un sismo de cierta Intensidad como una función de los Índices de Vulnerabilidad" (Proyecto RADIUS, 1999). Las Funciones de Daño utilizadas en este estudio son las de Benedetti y Benzoni

Las "Funciones de Daño" utilizadas para las estructuras mixtas y de hormigón se ilustran en las figuras 6 y 7.

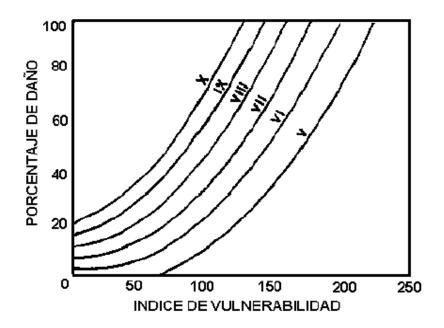


Figura 6 Función de daños para Estructuras Mixtas. Fuente: Proyecto RADIUS

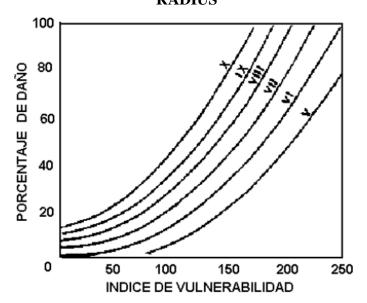


Figura 7 Función de daños para Estructuras de Hormigón. Fuente: Proyecto RADIUS

3.3.4.1 Determinación del grado de daño

Mediante las Funciones de Daño de las figuras 6 y 7, en la cual intervienen el Índice de Vulnerabilidad de las edificaciones calculados previamente, la intensidad de los terremotos y el porcentaje de daño, se determinó el porcentaje de daño en las 72 edificaciones del estudio para un terremoto de Intensidad I=VIII, el cuales se escogió basados en la selección adoptada para la preparación del "Escenario Sísmico de RADIUS" de los estudios realizados en el PROYECTO RADIUS, y debido a su cercanía y similitudes en vulnerabilidad de las edificaciones

que fueron parte de dicho estudio, con las que se localizan en la ciudad de Milagro. Ver tabla # 32 y 33.

Calcul	Calculo del Porcentaje de daño para una I=VIII (Edificios de Hormigón y Acero)			
Edificio				
Nº	Índice de Vulnerabilidad	Porcentaje de Daño (%)		
1	45	12		
2	55	15		
3	60	15		
4	75	20		
5	45	12		
6	170	65		
7	145	52		
8	80	21		
9	135	47		
10	50	13		
11	50	13		
12	30	10		
13	30	10		
14	45	12		
15	90	25		
16	125	42		
17	70	17		
19	60	15		
21	30	10		
22	60	15		
23	90	25		
25	130	44		
26	70	17		
27	15	8		
28	30	10		
29	30	10		
30	30	10		
31	80	21		
32	85	23		
33	60	15		
34	130	44		
37	170	65		
38	50	15		
39	30	10		
40	30	10		

Calculo del Porcentaje de daño para una I=VIII (Edificios de Hormigón y Acero)

Edificio Nº	Índice de Vulnerabilidad	Porcentaje de Daño (%)
41	50	15
42	15	8
43	30	10
44	15	8
45	50	13
46	70	17
47	75	20
48	55	15
49	95	27
50	170	65
51	75	20
52	65	16
55	45	12
56	70	17
58	75	20
59	45	12
60	65	16
61	35	11
62	110	34
63	30	10
64	45	12
65	45	12
66	60	15
67	50	15
68	75	20
69	65	16
70	45	12
71	15	8
72	85	23

Tabla 32 Calculo del Porcentaje de daño para una I=VIII (Edificios de Hormigón y Acero). Fuente: Elaborada por el autor.

Calculo del Porcentaje de daño para una I=VIII (Edificaciones mixtas)

Edificio Nº	Índice de Vulnerabilidad	Porcentaje de Daño (%)
18	105	50
20	85	32
24	85	32
35	60	23
36	70	27
53	50	21
54	65	25
57	125	67

Tabla 33 Calculo del Porcentaje de daño para una I=VIII (Edificaciones Mixtas y Madera). Fuente: Elaborada por el autor.

3.3.4.2. Nivel de Vulnerabilidad en las edificaciones

Según el porcentaje de daño en caso de un sismo de I=VIII, se ha clasificado a las edificaciones en 4 tipos de nivel de Vulnerabilidad mediante la tabla # 34. Ver tabla # 35.

Vulne	erabilidad	Descripción
		Existe una gran posibilidad del colapso de la
	Muy Alta	edificación. Destrucción total con
		pocos supervivientes. Porcentaje de daño (75-100%).
	Alta	Grandes daños en importantes edificios, con
		derrumbes parciales. Porcentaje de daño (50 – 74
		%).
		Daños leves en estructuras especializadas. Daños
	Intermedio	considerables en estructuras ordinarias bien
		construidas, posibles derrumbes. Daño severo en
		estructuras pobremente construidas. Porcentaje de
		daño (25 – 49 %).
		Daños insignificantes en estructuras de buen diseño
	Bajo	y construcción. Daños leves a moderados en
		estructuras ordinarias bien construidas. Daños
		considerables en estructuras pobremente construidas.
		Porcentaje de daño (1 – 24 %).

Tabla 34 Clasificación y descripción de Niveles de Vulnerabilidad. Fuente: Elaborada por el autor.

Edificio Nº	Porcentaje de Daño (%)	Vulnerabilidad
1	12	Bajo
2	15	Bajo
3	15	Bajo
4	20	Bajo
5	12	Bajo
6	65	Alta
7	52	Alta
8	21	Bajo
9	47	Intermedio
10	13	Bajo
11	13	Bajo
12	10	Bajo
13	10	Bajo
14	12	Bajo
15	25	Intermedio
16	42	Intermedio
17	17	Bajo
18	50	Alta
19	15	Bajo
20	32	Intermedio
21	10	Bajo
22	15	Bajo
23	25	Intermedio
24	32	Intermedio
25	10	Bajo
26	44	Intermedio
27	17	Bajo
28	8	Bajo
29	10	Bajo
30	10	Bajo
31	10	Bajo
32	21	Bajo
33	23	Bajo
34	15	Bajo
35	23	Bajo
36	27	Intermedio
37	65	Alta

Edificio Nº	Porcentaje de Daño (%)	Vulnerabilidad
38	15	Bajo
39	10	Bajo
40	10	Bajo
41	15	Bajo
42	8	Bajo
43	10	Bajo
44	8	Bajo
45	13	Bajo
46	17	Bajo
47	20	Bajo
48	15	Bajo
49	27	Intermedio
50	65	Alta
51	20	Bajo
52	16	Bajo
53	21	Bajo
54	25	Intermedio
55	12	Bajo
56	17	Bajo
57	67	Alta
58	20	Bajo
59	12	Bajo
60	16	Bajo
61	11	Bajo
62	34	Intermedio
63	10	Bajo
64	12	Bajo
65	12	Bajo
66	15	Bajo
67	15	Bajo
68	20	Bajo
69	16	Bajo
70	12	Bajo
71	8	Bajo
72	23	Bajo

Tabla 35 Niveles de Vulnerabilidad en las Edificaciones. Fuente: Elaborada por el autor.

De acuerdo a la información obtenida sobre el Porcentaje de daño que puede padecer cada edificación en el caso de ocurrir un sismo de I=VIII, y la clasificación en niveles de Vulnerabilidad, se obtuvo la distribución estadística que se explica a continuación y se presenta en la gráfica #4. Donde se observa que el nivel de Vulnerabilidad predominantes en la zona de estudio es el siguiente: Bajo (76.39%).

Existen otros dos niveles que se presentan en la gráfica #4, aunque en menor influencia también se pudo observar en la zona de estudio los cuales son los siguientes: Intermedio (15.28%), Alto (8.33%). Ver tabla # 36.

Vulne	Vulnerabilidad		
Nivel	Porcentaje (%)		
Muy Alto	0		
Alto	8,33		
Intermedio	15,28		
Bajo	76,39		

Tabla 36 Distribución porcentual de los 4 Niveles de Vulnerabilidad. Fuente: Elaborada por el autor

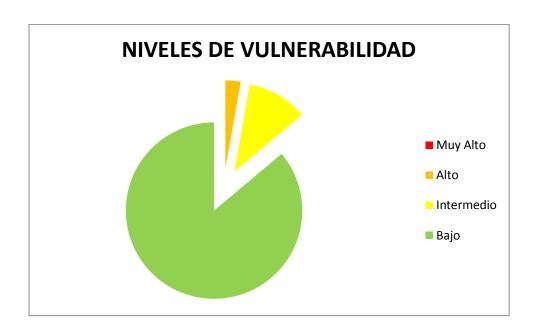


Grafico 4 Niveles de Vulnerabilidad. Fuente: Elaborada por el autor

3.3.5. Pérdidas económicas en el avalúo comercial de las edificaciones

Las pérdidas económicas en el avalúo comercial de las edificaciones se estimaron mediante la siguiente formula: ver tabla # 37.

Perdida= (% de Daño / 100) * Avalúo comercial

En donde:

% de daño es el estimado en 3.3.4.1.

Pérdida Económica				
Edificio Nº	Porcentaje de Daño (%) Avalúo comercial (\$)		Perdida (\$)	
1	12	264082.5	31689.9	
2	15	141075	16929	
3	15	138600	20790	
4	20	107250	12870	
5	12	85800	10296	
6	65	190575	72418.5	
7	52	138600	42966	
8	21	97500	12675	
9	47	91800	21114	
10	13	29400	3822	
11	13	22050	2866.5	
12	10	22050	2205	
13	10	10 37800		
14	12	178200	21384	
15	25	88200	13230	
16	42	46800	7488	
17	17	105300	13689	
18	50	40950	22522.5	
19	15	85050	12757.5	
20	32	23400	9828	
21	10	22050	2205	
22	15	432000	64800	
23	25	118800	17820	
24	32	35100	14742	
25	10	142500	14250	
26	44	200000	58000	
27	17	85050	12757.5	
28	8	48600	3888	
29	10	63000	6300	
30	10	40500		
31	10	48600	4860	
32	21	189000	39690	
33	23	88200	14112	
34	15	75600	11340	
35	23	93600	14976	

	Pérdida Económica					
Edificio Nº	Porcentaje de Daño (%) Avalúo comercial (\$)		Perdida (\$)			
36	27	28350	14175			
37	65	37800	14364			
38	15	28350	3685.5			
39	10	28350	2835			
40	10	28350	2835			
41	15	22050	2866.5			
42	8	22050	1764			
43	10	28350	2835			
44	8	66000	5280			
45	13	10800	1404			
46	17	10800	1836			
47	20	26775	3213			
48	15	46800	5616			
49	27	61200	9792			
50	65	28350	10773			
51	20	95287.5	11434.5			
52	16	91800	11016			
53	21	28350	5953.5			
54	25	107250	21450			
55	12	142500	17100			
56	17	28350	4819.5			
57	67	70200				
58	20	195000	23400			
59	12	128250	15390			
60	16	136500	16380			
61	11	11 64800				
62	34 1584		23760			
63	10 141'		1417.5			
64	12	371250	44550			
65	12	79800	9576			
66	15	100800	15120			
67	15	11025	1433.25			
68	20	81600	9792			
69	16	78000	12480			
70	12	91200	10944			
71	8	16200	1296			
72	23	84500	10140			
Total Perdida Económica en la Zona (\$)=			1.347.297,65			

Tabla 37 Perdida Económica. Fuente: Elaborada por el autor

CAPITULO IV ANÁLISIS E INTERPRETACIÓN DE RESULTADOS

CAPÍTULO IV: ANÁLISIS E INTERPRETACIÓN DE RESULTADOS

Existe un riesgo ciertamente acentuado en la zona norte de la ciudad de Milagro, parroquia Camilo Andrade delimitada al norte por la calle 24 de Mayo, al sur por la calle Gabriel García Moreno, al este con la calle Pedro Carbo y al oeste con la calle Ernesto Seminario, debido al grado de deterioro de las estructuras que se encuentra en dicha zona. El 55.55 % de las 72 edificaciones tienen entre 35 y 55 años, de las cuales el 30% tiene niveles de vulnerabilidad Alta o muy Alta y se encuentran en un rango de Porcentaje de Daño entre 25 y 67%.

El total de Pérdida económica para las 72 edificaciones, en el caso de un sismo de I=VIII, equivale a la cantidad de \$1.347.297,65 dólares americanos. El 15.28% de las edificaciones sufran pérdidas en el avalúo comercial en un rango del 30 al 67% del valor total de su avalúo, el otro 43.06% de las edificaciones sufran pérdidas de entre el 15 y 29% de su avalúo comercial. Esto produciría un impacto muy grande en la economía de la población ubicada en dicha zona.

CAPITULO V CONCLUSIONES Y RECOMENDACIONES

CAPÍTULO V: CONCLUSIONES Y RECOMENDACIONES

5.1. Conclusiones

- 1. En base a la información obtenida y recolectada se puede determinar que la zona norte de la ciudad de milagro, parroquia Camilo Andrade delimitada al norte por la calle 24 de Mayo, al sur por la calle Gabriel García Moreno, al este con la calle Pedro Carbo y al oeste con la calle Ernesto Seminario, se encuentra en una zona de alto peligro sísmico,
- El 55.55% de las edificaciones de la zona se encuentran en un rango de entre
 35 55 años de haber sido construidas, época en la cual las normas constructivas no especificaban el detallamiento sísmico.
- A su vez en dicha zona los edificios no poseen el retiro lateral y posterior pertinente encontrándose una mayoría adosados.
- 4. También podemos encontrar varias patologías, que "son los efectos que surgen en la edificación producto de un mal diseño, una errada configuración estructural, una construcción mal elaborada, o un empleo de materiales deficientes o inapropiados para la obra" (Ariana & Pedro, 2009).
- 5. Debido a los problemas previamente mencionados se incrementaría los daños a las edificaciones en el caso de acontecer un sismo de gran intensidad, el máximo porcentaje de daño obtenido para un sismo de I=VIII es del 65% en edificios de hormigón y 67% en edificaciones mixta, a su vez

- el 8,33% y el 15,28% de las edificaciones tienen un nivel alto e intermedio de vulnerabilidad respectivamente lo que representa un gran peligro para los ciudadanos de dicha edificación.
- 6. Las edificaciones de esta zona básicamente tienen uso residencial e comercial y son las estructuras de composición mixta y las de hormigón armado de más de 35 años de haber sido construidas las que tienen mayor posibilidad de colapso y afectación a los ciudadanos.
- No existen zonas de concentración seguras cercanas a la zona de estudio, en caso de siniestros.
- 8. El escaso desarrollo de capacidades en la población en estos ámbitos es un factor que agrava los niveles de riesgo contribuyendo a causar mayores daños en caso de ocurrir un sismo de grandes magnitudes.

5.2. Recomendaciones

- Se deben realizar alternativas para la mitigación del riesgo sísmico en las edificaciones estudiadas con el fin de intentar disminuir o culminar con la problemática y necesidades de los habitantes de dicho sector.
- Se deberán evaluar las demás edificaciones de las parroquias urbanas de la ciudad de Milagro debido a las características coincidentes a

- las de la parroquia seleccionada en este estudio para prevenir mayores catástrofes en el caso de un sismo de gran intensidad.
- El municipio de San Francisco de Milagro debe crea ordenanzas para futuras construcciones que no permitan estas patologías y problemas de adosamiento en las construcciones.
- 4. Debe haber un mayor control por parte de las entidades competente en el correcto uso y seguimiento de la norma ecuatoriana de la construcción.

CAPITULO VI BIBLIOGRAFÍA

VI. BIBLIOGRAFIA

- Albarracin, O. (2005). *Monografias.com*. Recuperado el 01 de Diciembre de 2013, de http://www.monografias.com/trabajos92/zonificacion-geotecnica-zona-centro-sogamoso/zonificacion-geotecnica-zona-centro-sogamoso.shtml
- Argudo, J. (1999). http://jaimeargudo.com/radius-project/spanish/. Recuperado el 05 de Enero de 2015, de http://jaimeargudo.com/radius-project/spanish/: http://jaimeargudo.com/wp-content/uploads/2011/04/RADIUS-VOLUMEN-III-ESTUDIO-VULNERABILIDAD-EDIFICACIONES.pdf
- Argudo, J. (Abril de 2011). www.jaimeargudo.com. Recuperado el 3 de Noviembre de 2013, de http://jaimeargudo.com/radius-project/spanish/
- Astorga, A., & Rivero, P. (2009). Sistema de Información para la Gestión Ambiental y de Riesgos. Recuperado el 1 de Noviembre de 2013, de sigar.chacao.gob.ve: http://sigar.chacao.gob.ve/EDURIESGO/documentos/vulnerabilidad_archi vos/04_patologias_en_las_edificaciones.pdf
- DAVILA, F. Z. (Febrero de 2011). *SISMOLOGIA*. Recuperado el 16 de Diciembre de 2013, de GEOCIENCIAS: http://www.geociencias.unam.mx/~ramon/sismo/IntroSism.pdf
- Guerrero, A. R. (2009). www.manglar.uninorte.edu.com. Recuperado el 01 de Diciembre de 2013, de http://manglar.uninorte.edu.co/bitstream/handle/10584/105/92535650.pdf? sequence=1
- Instituto Geofísico de la Escuela Politécnica Nacional. (2010). Servicio nacional de sismología y Vulcanología. Recuperado el 16 de Diciembre de 2013, de Instituto Geofísico EPN: http://www.igepn.edu.ec/quienes-somos/presentacion.html
- MIDUVI, CAMARA DE LA CONTRUCCION DE QUITO. (2013).

 http://www.normaconstruccion.ec/. Recuperado el 05 de Enero de 2015,
 de http://www.normaconstruccion.ec/:
 http://www.normaconstruccion.ec/capitulos_nec_2014/DISENO_SISMO_
 RESISTENTE.pdf
- Municipio del Distrito Metropolitana de Quito. (22 de Mayo de 2003). *Ordenanza* 3457. Recuperado el 16 de Diciembre de 2013, de Ordenanza y resoluciones metropolitanas:

 http://www7.quito.gob.ec/mdmq_ordenanzas/Ordenanzas/ORDENANZA S%20AÑOS%20ANTERIORES/ORD-3457%20-%20NORMAS%20DE%20ARQUITECTURA%20Y%20URBANISMO.p df
- R. Aguilar, D. B. (Enero de 2011). *EVALUACION DE LA VULNERABILIDAD SISMICA*. Recuperado el 16 de Diciembre de 2013, de BIBLIOTECA ESPE: http://biblioteca.espe.edu.ec/upload/7__Articulo_peligrosidad.pdf

VII ANEXOS

RIESGO SÍSMICO EN EDIFICACIONES DE LA ZONA NORTE DE LA CIUDAD DE MILAGRO, ENTRE LAS CALLES 24 DE MAYO – GABRIEL GARCIA MORENO – PEDRO CARBO – ERNESTO SEMINARIO

FORMULARIO DE LEVANTAMIENTO VISUAL DE DATOS 1. Información General Edad (Años) 15 Entre las calles Simón Bolívar Dirección: y García Moreno Edificación Nº: 01 Inspector: Juan Vargas Centanaro 2. Material de Construcción Hormigón Armado Mixto Acero 3. Uso del Edificio Residencial Comercial X Educación Gobierno 4.1. Sistema estructurales Dúctiles **Otros Sistemas** Pórticos Resistente a Sistemas Duales \mathbf{X} Estructurales para Momentos Edificaciones 4.2. Sistema estructurales de Ductilidad Limitada Pórticos Resistente a Momentos Muros Estructurales Portantes 5. Dimensiones principales Número de Pisos = Altura de la edificación = **10** 6. Estado de conservación Mala X Bueno Regular

Figura 8 Formulario de Levantamiento Visual de Datos 001. Fuente: Elaborado por el autor.

1. Información General						
Edad (Años)			17			
	C	alle (García Moreno, Entre	e las		
Dirección:		calle	es Ernesto Seminario	y		
	Simón Bolívar					
Edificación Nº:	02					
Inspector:	J	uan V	Vargas Centanaro			
2. Mate	eria	al de	Construcción			
Hormigón Armad	lo	X	Mixto			
Acero						

ACCIO									
			3. U	so de	l Edificio				
Residencial	X	Cor	nercial	X	Educa	ción		Gobierno	
		4	.1.Sistema	estru	ıcturales Dı	úctile	es		
Sistemas Duales Pórticos Mo				Resi		X	F	Otros Sistemas Estructurales para Edificaciones	
	4	.2. Siste	ma estructi	ırale	s de Ductili	dad	Limita	da	
Pórticos Resis	stente	a Mom	entos		Muros Estructurales Portantes				
			5. Dimen	sion	es principa	les			
Númer	o de I	Pisos =		2	A	ltura	de la e	dificación =	6.3
			6. Estad	o de	conservacio	ón			
Bueno X Regular Mala							Mala		

Figura 9 Formulario de Levantamiento Visual de Datos 002. Fuente: Elaborado por el autor

1. Información General							
Edad (Años)			35				
Dirección:	С		García Moreno, entre las es Ernesto Seminario y Simón Bolívar				
Edificación Nº:		03					
Inspector:	Jı	uan V	Vargas Centanaro				
2. Mate	eria	al de	Construcción				
Hormigón Armad	do	X	Mixto				
Acero							

Acero					A 182 5		The second second		
			3. Us	so de	l Edificio				
Residencial	X	Cor	nercial	X	Educad	ción		Gobierno	
		4	.1.Sistema	estru	cturales Dú	ictile	S		
Sistemas Duales M				Otros Sistemas Estructurales para Edificaciones			tructurales para		
	4.	2. Siste	ma estructu	ırale	s de Ductilio	dad I	Limitada	1	
Pórticos Resis	stente	a Mom	entos	X	Muros Estructurales Portantes				
			5. Dimen	sion	es principal	es			
Númer	o de P	isos =		4	A	ltura	de la edi	ficación =	9
			6. Estad	o de	conservació	n		-	
Bueno X Regular					ır		_	Mala	

Figura 10 Formulario de Levantamiento Visual de Datos 003. Fuente: Elaborado por el autor.

1. In:	for	mac	ión General			
Edad (Años)			21			
Dirección:	С		García Moreno, entre las es Ernesto Seminario y Simón Bolívar			
Edificación Nº:	04					
Inspector:	J	uan ^v	Vargas Centanaro			
2. Mate	eria	al de	Construcción			
Hormigón Armad	lo	X	Mixto			
Acero						

			3. U	so de	l Edificio				
Residencial	X	Cor	nercial	X	Educa	ción		Gobierno	
	4.1.Sistema estructurales Dúctiles								
Sistemas Dua	Sistemas Duales Mo				istente a tos	X	Es	Otros Sistemas tructurales para Edificaciones	
	4	I.2. Siste	ma estructi	urale	s de Ductili	dad l	Limitada	ı	
Pórticos Resi	stente	a Mom	entos	Muros Estructurales Portantes					
			5. Dimer	ision	es principal	les			
Númer	o de l	Pisos =		3	A	ltura	de la edi	ficación =	9
	6. Estado de conservación								
Bueno	Bueno X Reg							Mala	

Figura 11 Formulario de Levantamiento Visual de Datos 004. Fuente: Elaborado por el autor.

FORMULARIO DE LEVANTAMIENTO VISUAL DE DATOS 1. Información General Edad (Años) 21 Calle García Moreno, entre las Dirección: calles Ernesto Seminario y Simón Bolívar Edificación Nº: 05 Inspector: Juan Vargas Centanaro 2. Material de Construcción Mixto Hormigón Armado X Acero 3. Uso del Edificio Residencial X Comercial X Educación Gobierno 4.1. Sistema estructurales Dúctiles **Otros Sistemas** Pórticos Resistente a X Estructurales para Sistemas Duales Momentos Edificaciones 4.2. Sistema estructurales de Ductilidad Limitada Pórticos Resistente a Momentos Muros Estructurales Portantes 5. Dimensiones principales Número de Pisos = Altura de la edificación = 7.5 6. Estado de conservación

Figura 12 Formulario de Levantamiento Visual de Datos 005. Fuente: Elaborado por el autor.

Regular

Mala

X

Bueno

1. Información General							
Edad (Años)			21				
	C	Calle García Moreno, entre la					
Dirección:		calle	s Ernesto Seminario y				
	Simón Bolívar						
Edificación Nº:	06						
Inspector:	J	uan '	Vargas Centanaro				
2. Mate	eri	al de	Construcción				
Hormigón Armad	lo	X	Mixto				
Acero							

Acero									
			3. U	so de	l Edificio				
Residencial	X	Cor	Comercial		Educa	ción		Gobierno	
		4	l.1.Sistema	estru	cturales Dú	íctile	es		
Sistemas Duales					Resistente a X Estructu			Otros Sistemas tructurales para Edificaciones	
	4	.2. Siste	ma estructi	ırale	s de Ductili	dad [Limitada	ı	
Pórticos Res	istente	a Mom	entos		Muros Estructurales Portantes				
			5. Dimen	sion	es principal	les			
Núme	Número de Pisos =				Altura de la edificación =			12	
			6. Estad	o de	conservació	'n		·	
Bueno	Bueno Regular X Mala								

Figura 13 Formulario de Levantamiento Visual de Datos 006. Fuente: Elaborado por el autor.

1. In:	for	mac	ión General					
Edad (Años)			37					
	С	Calle García Moreno, entre las						
Dirección:		calles Ernesto Seminario y						
		Simón Bolívar						
Edificación Nº:		07						
Inspector:	J	uan V	Vargas Centanaro					
2. Mate	eri	al de	Construcción					
Hormigón Armad	lo	X	Mixto					
Acero								

	3. Uso del Edificio										
Residencial	X	Comercial	mercial X Educación (Gobierno				
4.1.Sistema estructurales Dúctiles											
Sistemas Dual	Sistemas Duales Pórticos Mo						Otros Sistemas structurales para Edificaciones				
	4	.2. Sistema estructi	urale	s de Ducti	lidad	l Limita	ıda				
Pórticos Resi	stente	a Momentos	X	Muros Estructurales Portantes							
		5. Dimer	sion	es princip	ales						
Númer	o de l	Pisos =	4	1	Altura	a de la e	dificación =	10.5			
		6. Estad	o de	conservac	ión						
Bueno		Re	Regular				Mala				

Figura 14 Formulario de Levantamiento Visual de Datos 007. Fuente: Elaborado por el autor.

1. Información General							
Edad (Años)		37					
Dirección:	la	Calle Ernesto Seminario, entre las calles García Moreno y 10 de Agosto					
Edificación Nº:	08						
Inspector:	J	uan ^v	Vargas Centanaro				
2. Mate	eria	al de	Construcción				
Hormigón Armad	lo	X	Mixto				
Acero							

Acero									
		3. Us	so de	el Edificio					
Residencial		Comercial	X	Educa	ción	Gobierno			
4.1.Sistema estructurales Dúctiles									
Sistemas Duales Pórticos Mo				istente a tos		Otros Sistemas Estructurales para Edificaciones			
	4.2.	Sistema estructu	ırale	s de Ductili	dad]	Limitada			
Pórticos Resis	tente a N	Momentos	X	Muros Estructurales Portantes					
		5. Dimen	sion	es principal	les				
Número	de Piso	os =	2	Altura de la edificación = 6.5					
		6. Estad	o de	conservació	ón				
Bueno		R	egula	ar	X	Mala			

Figura 15 Formulario de Levantamiento Visual de Datos 008. Fuente: Elaborado por el autor.

FORMULARIO DE LEVANTAMIENTO VISUAL DE DATOS 000000 1. Información General Edad (Años) 37 Entre las calles Ernesto Dirección: Seminario y 10 de Agosto Edificación Nº: 09 Inspector: Juan Vargas Centanaro 2. Material de Construcción Hormigón Armado X Mixto Acero 3. Uso del Edificio Residencial X Educación Gobierno Comercial X 4.1. Sistema estructurales Dúctiles **Otros Sistemas** Pórticos Resistente a Sistemas Duales Estructurales para Momentos Edificaciones 4.2. Sistema estructurales de Ductilidad Limitada Pórticos Resistente a Momentos \mathbf{X} Muros Estructurales Portantes **5.** Dimensiones principales Número de Pisos = Altura de la edificación = **10** 6. Estado de conservación Regular Mala **Bueno**

Figura 16 Formulario de Levantamiento Visual de Datos 009. Fuente: Elaborado por el autor.

FORMULARIO DE LEVANTAMIENTO **VISUAL DE DATOS** 1. Información General Edad (Años) 25 Calle 10 de Agosto, entre las Dirección: calles Simón Bolívar y Ernesto Seminario Edificación Nº: 10 Inspector: Juan Vargas Centanaro 2. Material de Construcción Hormigón Armado Mixto Acero 3. Uso del Edificio Residencial X X Educación Comercial Gobierno 4.1. Sistema estructurales Dúctiles Otros Sistemas Pórticos Resistente a Sistemas Duales X Estructurales para Momentos Edificaciones 4.2. Sistema estructurales de Ductilidad Limitada Pórticos Resistente a Momentos Muros Estructurales Portantes 5. Dimensiones principales Número de Pisos = Altura de la edificación = 3 6. Estado de conservación X **Bueno** Regular Mala

Figura 17 Formulario de Levantamiento Visual de Datos 010. Fuente: Elaborado por el autor.

1. Información General									
Edad (Años)		37							
Dirección:	ca		0 de Agosto, entre la Simón Bolívar y Erna ario						
Edificación Nº:	11								
Inspector:	Jı	uan V	Vargas Centanaro						
2. Mate	eria	al de	Construcción						
Hormigón Armad	lo	X	Mixto						
Acero									

		3. Us	so de	l Edificio)				
Residencial	X	Comercial]	Educac	ión	Gobierno		
4.1.Sistema estructurales Dúctiles									
Sistemas Duales			Otros Sistemas Estructurales para Edificaciones			structurales para			
	4	1.2. Sistema estructu	ırale	s de Duct	ilidad	Limitad	da		
Pórticos Resis	tente	e a Momentos	X	Muros Estructurales Portantes					
		5. Dimen	sion	es princip	oales				
Número	Número de Pisos =			Altura de la edificación = 2.5				2.5	
	6. Estado de conservación								
Bueno		Re	Regular				Mala		

Figura 18 Formulario de Levantamiento Visual de Datos 011. Fuente: Elaborado por el autor.

FORMULARIO DE LEVANTAMIENTO VISUAL DE DATOS

1. Información General							
Edad (Años)		37					
Dirección:	ca		0 de Agosto, entre la Simón Bolívar y Ern ario				
Edificación Nº:	12						
Inspector:	J	uan V	Vargas Centanaro				
2. Mate	eria	al de	Construcción				
Hormigón Armad	lo	X	Mixto				
Acero							

Acero								
		3. U	so de	l Edificio				
Residencial	(Comercial	X	Educa	Educación		Gobierno	
		4.1.Sistema	estru	cturales D	úctile	S		
Sistemas Dual	Estructurales			Otros Sistemas structurales para Edificaciones				
	4.2. Si	stema estructi	urale	s de Ductili	dad l	Limitad	la	
Pórticos Resis	stente a Mo	omentos	X	Muros Estructurales Portantes				
		5. Dimer	sion	es principa	les			
Númer	Número de Pisos =			1 Altura de la edificación =			lificación =	2.5
		6. Estad	o de	conservacio	ón			
Bueno		X R	egula	ır			Mala	

Figura 19 Formulario de Levantamiento Visual de Datos 012. Fuente: Elaborado por el autor.

FORMULARIO DE LEVANTAMIENTO VISUAL DE DATOS 1. Información General Edad (Años) Calle 10 de Agosto, entre las Dirección: calles Simón Bolívar y Ernesto Seminario Edificación Nº: 13 Inspector: Juan Vargas Centanaro 2. Material de Construcción Mixto Hormigón Armado Acero 3. Uso del Edificio Residencial Educación Comercial X Gobierno 4.1. Sistema estructurales Dúctiles **Otros Sistemas** Pórticos Resistente a Sistemas Duales X Estructurales para Momentos Edificaciones 4.2. Sistema estructurales de Ductilidad Limitada Pórticos Resistente a Momentos Muros Estructurales Portantes 5. Dimensiones principales Número de Pisos = Altura de la edificación = 2.5 6. Estado de conservación \mathbf{X} Mala Bueno Regular

Figura 20 Formulario de Levantamiento Visual de Datos 013. Fuente: Elaborado por el autor.

1. Información General								
Edad (Años)	2							
Dirección:	Entre las calles 10 de Agosto y Simón Bolívar							
Edificación Nº:	14							
Inspector:	J	uan ^v	Vargas Centanaro					
2. Mate	eria	al de	Construcción					
Hormigón Armad	lo	X	Mixto					
Acero								

	3. Uso del Edificio										
Residencial	X	Cor	nercial	Educa	ción		Gobierno				
	4.1.Sistema estructurales Dúctiles										
	Pórticos				aistanta a			Otros Sistemas			
Sistemas Dual	Sistemas Diiales		men		X	Estructurales para					
	Mio			men	tos]	Edificaciones			
	4	.2. Siste	ma estructu	ırale	s de Ductili	dad	Limitad	a			
Pórticos Resis	stente	a Mome	entos	Muros Estructurales Portantes							
			5. Dimen	sion	es principa	les					
Númer	Número de Pisos =					Altura de la edificación =			9.6		
	6. Estado de conservación										
Bueno		X	Regular					Mala			

Figura 21 Formulario de Levantamiento Visual de Datos 014. Fuente: Elaborado por el autor.

1. Información General								
Edad (Años)		40						
Dirección:	ca		Simón Bolívar, entre las García Moreno y 10 de					
Edificación Nº:		15						
Inspector:	J	uan V	Vargas Centanaro					
2. Mate	2. Material de Construcción							
Hormigón Armad	lo	X	Mixto					
Acero								

Acero							
		3. Us	so de	l Edificio			
Residencial	Con	mercial	X	Educac	ción	Gobierno	
	2	4.1.Sistema	estru	cturales Dú	ctile	s	
Sistemas Dijales			Resi	Otros Sistemas Estructurales para Edificaciones			
	4.2. Siste	ema estructu	ırale	s de Ductilio	dad I	Limitada	
Pórticos Resis	tente a Mom	entos		Muros Estructurales Portantes			
		5. Dimen	sion	es principal	es		
Número	de Pisos =		4	Altura de la edificación = 1			11
		6. Estad	o de	conservació	n		
Bueno	X	Regular				Mala	

Figura 22 Formulario de Levantamiento Visual de Datos 015. Fuente: Elaborado por el autor.

1. Información General								
Edad (Años)		30						
Dirección:	ca		Simón Bolívar, entre las García Moreno y 10 de					
Edificación Nº:	16							
Inspector:	J	uan V	Vargas Centanaro					
2. Mate	eria	al de	Construcción					
Hormigón Armad	do	X	Mixto					
Acero								
			0 TI 1					

Acero										
			3. Us	so de	el Edificio					
Residencial	X	Cor	mercial	Educación			Gobierno			
	4.1.Sistema estructurales Dúctiles									
Sistemas Duales			Resistente a mentos X Otros Sistemas Estructurales para Edificaciones			tructurales para				
	4.2	2. Siste	ma estructu	ırale	s de Ductili	dad	Limitad	a		
Pórticos Resis	stente a	a Mom	entos	Muros Estructurales Portantes						
			5. Dimen	sion	es principal	les				
Número	Número de Pisos =							6.5		
	6. Estado de conservación									
Bueno		X	Re	egula	ar			Mala		

Figura 23 Formulario de Levantamiento Visual de Datos 016. Fuente: Elaborado por el autor.

FORMULARIO DE LEVANTAMIENTO VISUAL DE DATOS 1. Información General Edad (Años) Calle Simón Bolívar, entre las Dirección: calles García Moreno y 10 de Agosto Edificación Nº: 17 Inspector: Juan Vargas Centanaro 2. Material de Construcción Mixto Hormigón Armado Acero 3. Uso del Edificio Residencial Educación X Comercial X Gobierno 4.1. Sistema estructurales Dúctiles Otros Sistemas Pórticos Resistente a Sistemas Duales Estructurales para \mathbf{X} Momentos Edificaciones 4.2. Sistema estructurales de Ductilidad Limitada Pórticos Resistente a Momentos Muros Estructurales Portantes 5. Dimensiones principales Número de Pisos = Altura de la edificación = **10** 6. Estado de conservación X Mala **Bueno** Regular

Figura 24 Formulario de Levantamiento Visual de Datos 017. Fuente: Elaborado por el autor.

1. Información General									
Edad (Años)		42							
Dirección:	ca	Calle García Moreno, entre las calles Simón Bolívar y Pedro Carbo							
Edificación Nº:		18							
Inspector:	J	Juan Vargas Centanaro							
2. Mat	eri	al de	Construcción						
Hormigón Armado			Mixto						
Acero									
			3. U	so de					

Acero								
		3. U	so de	l Edificio				
Residencial	Co	omercial	X	Educa	ción		Gobierno	
		4.1.Sistema	estru	cturales Di	íctiles	S		
Sistemas Duales Pórticos Mo			Resi			Es	Otros Sistemas tructurales para Edificaciones	
	4.2. Sist	ema estructi	urale	s de Ductili	dad I	Limitad	a	
Pórticos Resi	stente a Mon	nentos	X	Mu	ros Es	structura	ales Portantes	
		5. Dimer	sion	es principal	les			
Númer	Número de Pisos =			A	ltura	de la ed	ificación =	6.5
		6. Estad	o de	conservació	ón			
Bueno		R	egula	ır			Mala	X

Figura 25 Formulario de Levantamiento Visual de Datos 018. Fuente: Elaborado por el autor.

1. Información General										
Edad (Años)	35									
Dirección:	ca	Calle García Moreno, entre las calles Simón Bolívar y Pedro Carbo								
Edificación Nº:	19									
Inspector:	Juan Vargas Centanaro									
2. Mate	eri	al de	Construcción							
Hormigón Armad	lo	X	Mixto							
Acero										
		•		-						

			3. U	so de	l Edificio				
Residencial	X	Comer	cial	X	Educa	ción		Gobierno	
	4.1.Sistema estructurales Dúctiles								
Sistemas Duales Pórticos Mo				s Resi		X]	Otros Sistemas Estructurales para Edificaciones	
	4	I.2. Sistema	estruct	urale	s de Ductili	dad I	Limita	da	
Pórticos Resis	stente	e a Moment	os	Muros Estructurales Portantes					
			5. Dimer	sion	es principal	es			
Número de Pisos =				4	Altura de la edificación = 11				
			6. Estad	o de	conservació	n			
Bueno		X	R	ar			Mala		

Figura 26 Formulario de Levantamiento Visual de Datos 019. Fuente: Elaborado por el autor.

FORMULARIO DE LEVANTAMIENTO **VISUAL DE DATOS** 1. Información General Edad (Años) 45 Calle García Moreno, entre las Dirección: calles Simón Bolívar y Pedro Carbo Edificación Nº: 20 Inspector: Juan Vargas Centanaro 2. Material de Construcción X Hormigón Armado Mixto Acero 3. Uso del Edificio Residencial X X Comercial Educación Gobierno 4.1. Sistema estructurales Dúctiles Otros Sistemas Pórticos Resistente a Sistemas Duales Estructurales para Momentos Edificaciones 4.2. Sistema estructurales de Ductilidad Limitada Pórticos Resistente a Momentos Muros Estructurales Portantes \mathbf{X} 5. Dimensiones principales Número de Pisos = Altura de la edificación = 6.3 6. Estado de conservación

Figura 27 Formulario de Levantamiento Visual de Datos 020. Fuente: Elaborado por el autor.

Regular

Bueno

Mala

1. Información General								
Edad (Años)	45							
Dirección:	Calle García Moreno, entre las calles Simón Bolívar y Pedro Carbo							
Edificación Nº:	21							
Inspector:	Juan Vargas Centanaro							
2. Mate	eria	al de	Construcción					
Hormigón Armad	lo	X	Mixto					
Acero								

Acero								
		3. U	J so de	l Edificio				
Residencial		Comercial	X	Educa	ción		Gobierno	
		4.1.Sistema	estru	cturales D	íctile	s		
Sistemas Dijales				Resistente a mentos			Otros Sistemas tructurales para Edificaciones	
	4.2.	Sistema estruct	turale	s de Ductili	dad I	Limitad	a	
Pórticos Resis	stente a N	Momentos	X	Mu	Muros Estructurales Portantes			
		5. Dime	nsion	es principa	les			
Número de Pisos =			1	A	Altura de la edificación = 3.			
		6. Esta	do de	conservacio	ón			
Bueno		X	Regular				Mala	
						•		

Figura 28 Formulario de Levantamiento Visual de Datos 021. Fuente: Elaborado por el autor.

1. Información General							
Edad (Años)		20					
Dirección:		García Moreno, entre las Simón Bolívar y Pedro					
Edificación Nº:	22						
Inspector:	J	uan V	Vargas Centanaro				
2. Mate	eria	al de	Construcción				
Hormigón Armad	lo	X	Mixto				
Acero							

Acero								· 查查 · 可含 · · · · · · · · · · · · · · · · ·	
			3. U	so de	l Edificio				
Residencial	X	Cor	mercial	X	Educa	ción		Gobierno	
		4	l.1.Sistema	estru	cturales Dú	ictile	s		
Sistemas Duales Pórticos				esistente a X Otros Sistemas Estructurales para					
	4.	2. Siste	ma estruct	urale	s de Ductili	dad 1	Limitada	a	
Pórticos Res	istente	a Mom	entos		Muros Estructurales Portantes				
			5. Dimer	nsion	es principal	es			
Número de Pisos =			5	Altura de la edificación = 1				11	
	•	•	6. Estad	lo de	conservació	n			
Bueno		X	R	egula	ar			Mala	

Figura 29 Formulario de Levantamiento Visual de Datos 022. Fuente: Elaborado por el autor.

1. In	for	mac	ión General			
Edad (Años)	27					
Dirección:	ca		García Moreno, entre las Simón Bolívar y Pedro			
Edificación Nº:	23					
Inspector:	Juan Vargas Centanaro					
2. Mate	eria	al de	Construcción			
Hormigón Armad	lo	X	Mixto			
Acero						

Aceio										
			3. Us	so de	l Edificio					
Residencial	X	Cor	nercial	X	Educa	ación		Gobierno		
	4.1.Sistema estructurales Dúctiles									
Sistemas Duales Pórticos Mon			Resis ment		X		Otros Sistemas structurales para Edificaciones			
	4.2.	Siste	ma estructu	ırale	s de Ducti	ilidad	l Limita	ada		
Pórticos Resis	stente a	Mome	entos		Mı	uros I	Estructu	rales Portantes		
			5. Dimen	sion	es princip	ales				
Númer	Número de Pisos =			4	Altura de la edificación = 11.				11.5	
			6. Estad	o de	conservac	ión				
Bueno		X	Re	r			Mala			

Figura 30 Formulario de Levantamiento Visual de Datos 023. Fuente: Elaborado por el autor.

FORMULARIO DE LEVANTAMIENTO **VISUAL DE DATOS** 1. Información General Edad (Años) 55 Calle García Moreno, entre las Dirección: calles Simón Bolívar y Pedro Carbo Edificación Nº: 24 Inspector: Juan Vargas Centanaro 2. Material de Construcción X Hormigón Armado Mixto Acero 3. Uso del Edificio Residencial X Educación Comercial X Gobierno 4.1. Sistema estructurales Dúctiles Otros Sistemas Pórticos Resistente a Estructurales para Sistemas Duales Momentos Edificaciones 4.2. Sistema estructurales de Ductilidad Limitada Pórticos Resistente a Momentos Muros Estructurales Portantes \mathbf{X} 5. Dimensiones principales Número de Pisos = Altura de la edificación = **5.5** 6. Estado de conservación **Bueno** Regular Mala

Figura 31 Formulario de Levantamiento Visual de Datos 024. Fuente: Elaborado por el autor.

FORMULARIO DE LEVANTAMIENTO VISUAL DE DATOS 1. Información General Edad (Años) Entre las calles García Moreno Dirección: y Pedro Carbo Edificación Nº: 25 Inspector: Juan Vargas Centanaro 2. Material de Construcción Hormigón Armado Mixto Acero X 3. Uso del Edificio Residencial Educación Gobierno Comercial X 4.1. Sistema estructurales Dúctiles **Otros Sistemas** Pórticos Resistente a Sistemas Duales Estructurales para Momentos Edificaciones 4.2. Sistema estructurales de Ductilidad Limitada Pórticos Resistente a Momentos X Muros Estructurales Portantes **5.** Dimensiones principales Altura de la edificación = 7 Número de Pisos = 6. Estado de conservación

Figura 32 Formulario de Levantamiento Visual de Datos 025. Fuente: Elaborado por el autor.

Regular

Mala

 \mathbf{X}

Bueno

1. Información General									
Edad (Años)		10							
Dirección:	ca		Pedro Carbo, entre la García Moreno y 10 o						
Edificación Nº:		26							
Inspector:	J	uan V	Vargas Centanaro						
2. Mate	eri	al de	Construcción						
Hormigón Armad	of	X	Mixto						
Acero									

Acelo								
			3. U	so de	l Edificio			
Residencial	X	Com	nercial	X	Educa	ción	Gobierno	
		4.	1.Sistema	estru	cturales Dú	ictiles	es ·	
Sistemas Duales Pórticos Mo			s Resi oment		X	Otros Sistemas Estructurales para Edificaciones		
	4.2	. Sister	na estructi	urales	s de Ductili	dad I	Limitada	
Pórticos Resi	istente a	Mome	ntos		Mu	ros E	Estructurales Portantes	
			5. Dimer	sione	es principal	es		
Núme	Número de Pisos =			5	Altura de la edificación =			
			6. Estad	o de	conservació	n		
Bueno		X Regula			ır		Mala	

Figura 33 Formulario de Levantamiento Visual de Datos 026. Fuente: Elaborado por el autor.

FORMULARIO DE LEVANTAMIENTO **VISUAL DE DATOS** 1. Información General Edad (Años) 32 Calle Pedro Carbo, entre las Dirección: calles García Moreno y 10 de Agosto Edificación Nº: 27 Inspector: Juan Vargas Centanaro 2. Material de Construcción Mixto Hormigón Armado Acero

	3. Uso del Edificio											
Residencial	X	Cor	nercial X Educació			ción		Gobierno				
	4.1.Sistema estructurales Dúctiles											
Sistemas Duale	Sistemas Dijales			Pórticos Resistente a Momentos X			Otros Sistemas Estructurales para Edificaciones					
	4	.2. Siste	ma estructı	ırale	s de Ductili	dad]	Limitada	a				
Pórticos Resis	tente	a Mome	entos	Muros Estructurales Portantes								
			5. Dimer	sion	es principal	les						
Número	Número de Pisos =				Altura de la edificación =			11				
	6. Estado de conservación											
Bueno	•	X	Regular					Mala				

Figura 34 Formulario de Levantamiento Visual de Datos 027. Fuente: Elaborado por el autor.

1. Información General										
Edad (Años)		21								
Dirección:		Entre las calles Pedro Carbo y 10 de Agosto								
Edificación Nº:	28									
Inspector:	J	uan V	Vargas Centanaro							
2. Mate	eri	al de	Construcción							
Hormigón Armad	do	X	Mixto							
Acero										

Acero											
3. Uso del Edificio											
Residencial	Со	mercial	X	Educa	ción		Gobierno				
	4.1.Sistema estructurales Dúctiles										
Sistemas Duales Pórticos Mo			Resi		X	Est	tros Sistemas ructurales para dificaciones				
	4.2. Siste	ema estructi	ırale	s de Ductili	dad	Limitada	1				
Pórticos Resis	tente a Mom	entos	Muros Estructurales Portantes								
		5. Dimen	sion	es principa	les						
Número	Número de Pisos =				ltura	de la edit	ficación =	3.5			
	6. Estado de conservación										
Bueno	X	R	egula	ır			Mala				

Figura 35 Formulario de Levantamiento Visual de Datos 028. Fuente: Elaborado por el autor.

1. Información General								
Edad (Años)			7					
Dirección:	ca	Calle 10 de Agosto, entre las calles Pedro Carbo y Simón Bolívar						
Edificación Nº:		29						
Inspector:	J	uan Y	Vargas Centanaro					
2. Mate	eria	al de	Construcción					
Hormigón Armad	do	X	Mixto					
Acero								

Accio											
3. Uso del Edificio											
Residencial		Con	nercial	X	Educa	ción		Gobierno			
	4.1.Sistema estructurales Dúctiles										
Sistemas Duales Pórticos Mo			Resi men		X	Es	Otros Sistemas tructurales para Edificaciones				
	4.	2. Siste	ma estructi	ırale	s de Ductili	dad	Limitad	a			
Pórticos Resis	stente	a Mome	entos		Muros Estructurales Portantes						
			5. Dimen	sion	es principal	les					
Número	o de P	isos =		1	A	ltura	de la ed	ificación =	3.5		
	6. Estado de conservación										
Bueno		X	Regular					Mala			

Figura 36 Formulario de Levantamiento Visual de Datos 029. Fuente: Elaborado por el autor.

FORMULARIO DE LEVANTAMIENTO **VISUAL DE DATOS** 1. Información General Edad (Años) 35 Calle 10 de Agosto, entre las Dirección: calles Pedro Carbo y Simón Bolívar Edificación Nº: 30 Inspector: Juan Vargas Centanaro 2. Material de Construcción Hormigón Armado Mixto Acero 3. Uso del Edificio Residencial X Educación Comercial Gobierno 4.1. Sistema estructurales Dúctiles Otros Sistemas Pórticos Resistente a Sistemas Duales Estructurales para Momentos Edificaciones 4.2. Sistema estructurales de Ductilidad Limitada Pórticos Resistente a Momentos Muros Estructurales Portantes \mathbf{X} 5. Dimensiones principales Número de Pisos = Altura de la edificación = 3.5 6. Estado de conservación

Figura 37 Formulario de Levantamiento Visual de Datos 030. Fuente: Elaborado por el autor.

Regular

X

Bueno

Mala

FORMULARIO DE LEVANTAMIENTO VISUAL DE DATOS 1. Información General Edad (Años) 35 Calle 10 de Agosto, entre las Dirección: calles Pedro Carbo y Simón Bolívar Edificación Nº: 31 Inspector: Juan Vargas Centanaro 2. Material de Construcción Mixto Hormigón Armado X Acero 3. Uso del Edificio Residencial Educación Comercial X Gobierno 4.1. Sistema estructurales Dúctiles **Otros Sistemas** Pórticos Resistente a Estructurales para Sistemas Duales Momentos Edificaciones 4.2. Sistema estructurales de Ductilidad Limitada Pórticos Resistente a Momentos Muros Estructurales Portantes \mathbf{X} 5. Dimensiones principales Número de Pisos = Altura de la edificación = 4 6. Estado de conservación

Figura 38 Formulario de Levantamiento Visual de Datos 031. Fuente: Elaborado por el autor.

Regular

Mala

X

Bueno

FORMULARIO DE LEVANTAMIENTO **VISUAL DE DATOS** 1. Información General Edad (Años) 42 Calle 10 de Agosto, entre las Dirección: calles Pedro Carbo y Simón Bolívar Edificación Nº: 32 Inspector: Juan Vargas Centanaro 2. Material de Construcción Hormigón Armado Mixto Acero 3. Uso del Edificio Residencial X X Educación Comercial Gobierno 4.1. Sistema estructurales Dúctiles **Otros Sistemas** Pórticos Resistente a Sistemas Duales X Estructurales para Momentos Edificaciones 4.2. Sistema estructurales de Ductilidad Limitada Pórticos Resistente a Momentos Muros Estructurales Portantes 5. Dimensiones principales Número de Pisos = Altura de la edificación = 11 6. Estado de conservación X **Bueno** Regular Mala

Figura 39 Formulario de Levantamiento Visual de Datos 032. Fuente: Elaborado por el autor.

FORMULARIO DE LEVANTAMIENTO VISUAL DE DATOS 1. Información General Edad (Años) 42 Calle 10 de Agosto, entre las Dirección: calles Pedro Carbo y Simón Bolívar Edificación Nº: 33 Inspector: Juan Vargas Centanaro 2. Material de Construcción Hormigón Armado Mixto Acero 3. Uso del Edificio Residencial X Educación Comercial Gobierno 4.1. Sistema estructurales Dúctiles **Otros Sistemas** Pórticos Resistente a Sistemas Duales X Estructurales para Momentos Edificaciones 4.2. Sistema estructurales de Ductilidad Limitada Pórticos Resistente a Momentos Muros Estructurales Portantes 5. Dimensiones principales Número de Pisos = Altura de la edificación = 9 6. Estado de conservación Regular Mala Bueno

Figura 40 Formulario de Levantamiento Visual de Datos 033. Fuente: Elaborado por el autor.

1. Información General									
Edad (Años)		35							
Dirección:	Calle Simón Bolívar, entre calles García Moreno y 10 Agosto								
Edificación Nº:	34								
Inspector:	J	uan V	Vargas Centanaro						
2. Mate	eria	al de	Construcción						
Hormigón Armad	lo	X	Mixto						
Acero									

Acelo									
			3. U	so de	l Edificio				
Residencial	X	Coı	mercial	X	Educa	ación		Gobierno	
		2	1.1.Sistema	estru	cturales I	Dúcti	les		
Sistemas Dua	Sistemas Duales Pórticos Mo					X	Es	Otros Sistemas tructurales para Edificaciones	
	4.	2. Siste	ma estructi	ırale	s de Ducti	lidad	l Limita	da	
Pórticos Resi	stente	a Mom	entos		Mı	ıros l	Estructur	ales Portantes	
			5. Dimer	sion	es princip	ales			
Númei	Número de Pisos =			4	4 Altura de la edificación =			lificación =	11.5
			6. Estad	o de	conservac	ión			
Bueno		X	X Regular					Mala	

Figura 41 Formulario de Levantamiento Visual de Datos 034. Fuente: Elaborado por el autor.

1. Información General									
Edad (Años)		35							
Dirección:	ca	Calle Simón Bolívar, entre las calles 10 de Agosto y 24 de Mayo							
Edificación Nº:		35							
Inspector:	J	Juan Vargas Centanaro							
2. Mat	eri	al de	Construcción						
Hormigón Arma	do		Mixto	X					
Acero									
			3	Heo de					

Acero										
			3. Us	so de	l Edificio					
Residencial	X	Con	nercial		Educad	ción		Gobierno		
4.1.Sistema estructurales Dúctiles										
Sistemas Duales Pórticos				Resi men			Est	Otros Sistemas tructurales para Edificaciones		
	4.2	. Sister	ma estructı	ırale	s de Ductili	dad I	Limitada	a		
Pórticos Resis	stente a	Mome	entos	X	Muros Estructurales Portantes					
			5. Dimen	sion	es principal	les				
Númer	o de Pis	os =		2	Altura de la edificación =			6.8		
			6. Estad	o de	conservació	'n				
Bueno		X	X Regular					Mala		

Figura 42 Formulario de Levantamiento Visual de Datos 035. Fuente: Elaborado por el autor.

1. Información General									
Edad (Años)		45							
Dirección:	ca	Calle 10 de Agosto, entre las calles Simón Bolívar y Ernesto Seminario							
Edificación Nº:	36								
Inspector:	J	uan V	Vargas Centanaro						
2. Mate	eria	al de	Construcción						
Hormigón Armad	lo		Mixto						
Acero			•						
			2 11						

ACCIO									
			3. Us	so de	l Edificio				
Residencial	X	Co	mercial	X	Educa	ción		Gobierno	
		4	4.1.Sistema	estru	cturales Dú	ictile	S		
Sistemas Diiales			Resi	istente a tos		Es	Otros Sistemas tructurales para Edificaciones		
	4	1.2. Siste	ema estructu	ırale	s de Ductili	dad I	Limitada	a	
Pórticos Resi	stente	a Mom	entos	X	Mu	ros E	structura	les Portantes	
			5. Dimen	sion	es principal	es			
Númer	o de l	Pisos =		1	A				3
			6. Estad	o de	conservació	n			
Bueno			Regular					Mala	X

Figura 43 Formulario de Levantamiento Visual de Datos 036. Fuente: Elaborado por el autor.

1. Información General										
Edad (Años)	40									
Dirección:	ca	Calle 10 de Agosto, entre las calles Simón Bolívar y Ernesto Seminario								
Edificación Nº:	37									
Inspector:	J	Juan Vargas Centanaro								
2. Mate	eria	al de	Construcción							
Hormigón Armad	lo	X	Mixto							
Acero										
			2 11 1							

Acero					A Property to				
		3. U	so de	l Edificio					
Residencial	X	Comercial	X	Educa		Gobierno			
4.1.Sistema estructurales Dúctiles									
Sistemas Duales			Res	istente a tos		I	Otros Sistemas Estructurales para Edificaciones		
	4.2	2. Sistema estructu	ırale	s de Ductili	dad]	Limita	da		
Pórticos Resis	stente a	a Momentos	X	Mu	ros E	structu	rales Portantes		
		5. Dimen	sion	es principal	es				
Númer	o de Pi	sos =	4	A	Altura de la edificación = 8			8	
		6. Estad	o de	conservació	n				
Bueno		R	egula	ar	X		Mala		

Figura 44 Formulario de Levantamiento Visual de Datos 037. Fuente: Elaborado por el autor.

1. Información General									
Edad (Años)	34								
Dirección:	ca	Calle 10 de Agosto, entre las calles Simón Bolívar y Ernesto Seminario							
Edificación Nº:		38							
Inspector:	J	Juan Vargas Centanaro							
2. Mate	eri	al de	Construcción						
Hormigón Armad	lo	X	Mixto						
Acero									
		•	3 Uso d						

	3. Uso del Edificio									
Residencial	X	Cor	mercial	X	Educa	ción		Gobierno		
	4.1.Sistema estructurales Dúctiles									
Sistemas Dua	Sistemas Duales Pórticos Mo			Res Smen		X	Es	Otros Sistemas tructurales para Edificaciones		
	4	l.2. Siste	ma estructi	ırale	s de Ductili	dad]	Limitada	ì		
Pórticos Resi	stente	a Mom	entos	Muros Estructurales Portantes						
			5. Dimer	sion	es principal	les				
Númer	Número de Pisos =							3		
	6. Estado de conservación									
Bueno			R	ar	X		Mala			

Figura 45 Formulario de Levantamiento Visual de Datos 038. Fuente: Elaborado por el autor.

1. Información General									
Edad (Años)	35								
Dirección:	ca		10 de Agosto, entre las Simón Bolívar y Ernesto ario						
Edificación Nº:	39								
Inspector:	J	Juan Vargas Centanaro							
2. Mate	eria	al de	Construcción						
Hormigón Armad	lo	X	Mixto						
Acero									
			0 TI 1						

110010									
3. Uso del Edificio									
Residencial	X	Cor	nercial	X	Educad	ción		Gobierno	
4.1.Sistema estructurales Dúctiles									
Sistemas Duales Pórticos Mo			Resi			Es	Otros Sistemas tructurales para Edificaciones		
	4	1.2. Siste	ma estructu	ırale	s de Ductili	dad Limi	tada	ı	
Pórticos Resis	stente	e a Mome	entos	X	Mu	ros Estruc	ctura	les Portantes	
			5. Dimen	sion	es principal	es			
Número de Pisos =				1	· • • • • • • • • • • • • • • • • • • •			3	
			6. Estad	o de	conservació	n	•		
Bueno	•	X	K Regular				•	Mala	

Figura 46 Formulario de Levantamiento Visual de Datos 039. Fuente: Elaborado por el autor.

1. Información General									
Edad (Años)	35								
Dirección:	Calle 10 de Agosto, entre las calles Simón Bolívar y Ernesto Seminario								
Edificación Nº:	40								
Inspector:	J	uan V	Vargas Centanaro						
2. Material de Construcción									
Hormigón Armad	lo	X	Mixto						
Acero									

710010										
3. Uso del Edificio										
Residencial	X	Co	mercial			Ec	lucación	Gobierno		
	4.1.Sistema estructurales Dúctiles									
Sistemas Dijales				Res	istente a tos		Es	Otros Sistemas structurales para Edificaciones		
	4	.2. Siste	ma estructi	ırale	s de Du	ctili	dad Limitad	a		
Pórticos Resis	stente	a Mom	entos	X		Mu	ros Estructura	Estructurales Portantes		
			5. Dimer	sion	es princ	ipal	les			
Númer	Número de Pisos =					Altura de la edificación =			3	
			6. Estad	o de	conserv	ació	ón			
Bueno		X	R	egul	ar			Mala		

Figura 47 Formulario de Levantamiento Visual de Datos 040. Fuente: Elaborado por el autor.

FORMULARIO DE LEVANTAMIENTO VISUAL DE DATOS 1. Información General Edad (Años) 45 Calle 10 de Agosto, entre las Dirección: calles Simón Bolívar y Ernesto Seminario Edificación Nº: 41 Inspector: Juan Vargas Centanaro 2. Material de Construcción Mixto Hormigón Armado Acero 3. Uso del Edificio Residencial Educación Comercial X Gobierno 4.1. Sistema estructurales Dúctiles Otros Sistemas Pórticos Resistente a Sistemas Duales Estructurales para Momentos Edificaciones 4.2. Sistema estructurales de Ductilidad Limitada Pórticos Resistente a Momentos Muros Estructurales Portantes \mathbf{X} 5. Dimensiones principales Número de Pisos = Altura de la edificación = 3 6. Estado de conservación Mala

Figura 48 Formulario de Levantamiento Visual de Datos 041. Fuente: Elaborado por el autor.

Regular

Bueno

1. Información General										
Edad (Años)	45									
Dirección:			las Calles 10 de Agosto sto Seminario							
Edificación Nº:	42									
Inspector:	J	Juan Vargas Centanaro								
2. Mate	eria	al de	Construcción							
Hormigón Armad	lo	X	Mixto							
Acero										

3. Uso del Edificio									
Residencial	X	Cor	mercial	Educación				Gobierno	
4.1.Sistema estructurales Dúctiles									
Sistemas Duales Pórticos Mo			Otros Sistemas				Otros Sistemas		
			Estructurales para						
			IVIC	Momentos Edificaciones					
	4.2. Sistema estructurales de Ductilidad Limitada								
Pórticos Resis	stente	a Mom	entos	X	Mu	Muros Estructurales Portantes			
			5. Dimen	sion	es principal	es			
Númer	o de l	Pisos =		1	A	Altura de la edificación = 3			
6. Estado de conservación									
Bueno		X	R	egula	ar			Mala	

Figura 49 Formulario de Levantamiento Visual de Datos 042. Fuente: Elaborado por el autor.

FORMULARIO DE LEVANTAMIENTO VISUAL DE DATOS 1. Información General Edad (Años) 35 Calle Ernesto Seminario, entre Dirección: las calles 10 de Agosto y 24 de Mayo Edificación Nº: 43 Inspector: Juan Vargas Centanaro 2. Material de Construcción Hormigón Armado Mixto Acero 3. Uso del Edificio Educación Residencial X Comercial Gobierno 4.1.Sistema estructurales Dúctiles Otros Sistemas Pórticos Resistente a Sistemas Duales Estructurales para Momentos Edificaciones 4.2. Sistema estructurales de Ductilidad Limitada Muros Estructurales Portantes Pórticos Resistente a Momentos \mathbf{X} **5.** Dimensiones principales Número de Pisos = Altura de la edificación = 5 6. Estado de conservación X Regular Bueno Mala

Figura 50 Formulario de Levantamiento Visual de Datos 043. Fuente: Elaborado por el autor.

1. Información General									
Edad (Años)		15							
Dirección:		Entre las calles Ernesto Seminario y 24 de Mayo							
Edificación Nº:	44								
Inspector:	J	Juan Vargas Centanaro							
2. Mate	eri	al de	Construcción						
Hormigón Armad	do	X	Mixto						
Acero									

Acero									
3. Uso del Edificio									
Residencial		Cor	mercial	X	Educa	Educación		Gobierno	
		4	l.1.Sistema	estru	cturales Du	íctile	es		
Sistemas Duales Pórticos Mo			Resi		X	Es	Otros Sistemas tructurales para Edificaciones		
	4.2.	Siste	ma estructu	ırale	s de Ductili	dad	Limitad	a	
Pórticos Resis	stente a N	Mom	entos		Mu	ros E	Estructura	les Portantes	
			5. Dimen	sion	es principa	les			
Númer	Número de Pisos =			1	Altura de la edificación = 4.			4.5	
			6. Estad	o de	conservació	ón			
Bueno		X	Re	ır			Mala		

Figura 51 Formulario de Levantamiento Visual de Datos 044. Fuente: Elaborado por el autor.

1. Información General								
Edad (Años)	33							
Dirección:	E	24 de Mayo, entre las calles Ernesto Seminario y Simón Bolívar						
Edificación Nº:		45						
Inspector:	J	Juan Vargas Centanaro						
2. Mate	eri	al de	Construcción					
Hormigón Armad	lo	X	Mixto					
Acero								
3. Uso de								

3. Uso del Edificio									
Residencial	X	Comercial		Educad	ción		Gobierno		
	4.1.Sistema estructurales Dúctiles								
Sistemas Dijales			Otros Sistemas Estructurales para Edificaciones						
	4	l.2. Sistema estructu	ırale	s de Ductilio	dad]	Limitada			
Pórticos Resis	stente	a Momentos	X	Muros Estructurales Portantes					
		5. Dimen	sion	es principal	es				
Número de Pisos =			1	· • • • • • • • • • • • • • • • • • • •				3	
-		6. Estad	o de	conservació	n				
Bueno		R	egula	ır	X		Mala		

Figura 52 Formulario de Levantamiento Visual de Datos 045. Fuente: Elaborado por el autor.

FORMULARIO DE LEVANTAMIENTO VISUAL DE DATOS

1. Información General									
Edad (Años)	34								
Dirección:	Eı	24 de Mayo, entre las calles Ernesto Seminario y Simón Bolívar							
Edificación Nº:		46							
Inspector:	J	Juan Vargas Centanaro							
2. Mate	eria	al de	Construcción						
Hormigón Armad	lo	X	Mixto						
Acero									

Residencial Comercial X Educación Gobierno

4.1 Sistema estructurales Dúctiles

4.1.Sistema estructurales Dúctiles									
Sistemas Duales		Porticos Resistente a Estructurale			Otros Sistemas Estructurales para Edificaciones				
4.2. Sis	4.2. Sistema estructurales de Ductilidad Limitada								
Pórticos Resistente a Mo	mentos	X	Muro	Muros Estructurales Portantes					
	5. Dimen	sion	es principale	es					
Número de Pisos =	=	1	Alt	Altura de la edificación = 3					
	6. Estado de conservación								
Bueno	R	Regular Mal			Mala	X			

Figura 53 Formulario de Levantamiento Visual de Datos 046. Fuente: Elaborado por el autor.

1. Información General							
Edad (Años)		35					
Dirección:	24 de Mayo, entre las calles Ernesto Seminario y Simón Bolívar						
Edificación Nº:	47						
Inspector:	J	uan V	Vargas Centanaro				
2. Mate	eri	al de	Construcción				
Hormigón Armad	lo	X	Mixto				
Acero							

			3. U	so de	el Edificio				
Residencial	X	Cor	nercial		Educa	Educación		Gobierno	
	4.1.Sistema estructurales Dúctiles								
Sistemas Duales Pórticos Mo							Es	Otros Sistemas tructurales para Edificaciones	
	4	.2. Siste	ma estructi	urale	s de Ductili	dad Li	mitad	a	
Pórticos Res	istente	a Mom	entos	X	Muros Estructurales Portantes				
			5. Dimer	ision	es principal	les			
Núme	Número de Pisos =				Altura de la edificación =			5.5	
			6. Estad	o de	conservacio	ón			
Bueno		X	R	egula	ar			Mala	

Figura 54 Formulario de Levantamiento Visual de Datos 047. Fuente: Elaborado por el autor.

1. Información General								
Edad (Años)	36							
Dirección:	Eı	24 de Mayo, entre las calles Ernesto Seminario y Simón Bolívar						
Edificación Nº:		48						
Inspector:	J	Juan Vargas Centanaro						
2. Mate	eria	al de	Construcción					
Hormigón Armad	lo	X	Mixto					
Acero								

									
Acero									
			3. U	so de	l Edificio				
Residencial	X	Con	nercial	X	Educa	ción		Gobierno	
		4	.1.Sistema	estru	icturales Di	íctiles			
Sistemas Duales Pórticos R Mom					L L Estructurales nara				
	4	1.2. Siste	ma estructi	urale	s de Ductili	dad Li	mitada	1	
Pórticos Resi	stente	e a Mome	entos	X	Mu	ros Esti	ructura	les Portantes	
			5. Dimer	ısion	es principa	les			
Número de Pisos =			2	Altura de la edificación =			5.3		
			6. Estad	o de	conservacio	ón			
Bueno		X	R	egula	ar			Mala	

Figura 55 Formulario de Levantamiento Visual de Datos 048. Fuente: Elaborado por el autor.

1. Información General								
Edad (Años)	36							
Dirección:	24 de Mayo, entre las calles Ernesto Seminario y Simón Bolívar							
Edificación Nº:		49						
Inspector:	Jı	Juan Vargas Centanaro						
2. Mate	eria	al de	Construcción					
Hormigón Armad	lo	X	Mixto					
Acero								

110010									
		3. U	so de	l Edificio					
Residencial	X	Comercial	X	Educa	ción		Gobierno		
	4.1.Sistema estructurales Dúctiles								
Sistemas Duales				Resistente a Estructural			Otros Sistemas structurales para Edificaciones		
	4.2. Sistema estructurales de Ductilidad Limitada								
Pórticos Resis	tente	a Momentos	X	Muros Estructurales Portantes					
		5. Dimer	sion	es principal	les				
Número	Número de Pisos =			Altura de la edificación = 8.			8.5		
-		6. Estad	o de	conservació	ón	•			
Bueno		R	egula	ır	X		Mala		

Figura 56 Formulario de Levantamiento Visual de Datos 049. Fuente: Elaborado por el autor.

1. Información General									
Edad (Años)	35								
Dirección:	Eı		Mayo, entre las calles o Seminario y Simón r						
Edificación Nº:	50								
Inspector:	J	Juan Vargas Centanaro							
2. Mate	eria	al de	Construcción						
Hormigón Armad	lo	X	Mixto						
Acero									

Horningon / trinado	21	14	ΠΛιΟ			ON A PLANTAGE NA	Mar Inches	The state of the s	
Acero					_				
			3. U	so de	l Edificio				
Residencial	X	Cor	Comercial		Educa	ación		Gobierno	
		4	1.1.Sistema	estru	cturales I)úcti	les		
Sistemas Duales			Resis ment	osistente a Sistemas Estructurales para Edificaciones					
	4	.2. Siste	ma estructi	urale	s de Ducti	lidad	l Limitad	da	
Pórticos Resis	stente	a Mom	entos	X	Muros Estructurales Portantes				
			5. Dimer	sion	es princip	ales			
Número	Número de Pisos =					4 Altura de la edificación =			10.5
			6. Estad	o de	conservac	ión			
Bueno			Re	egula	r	X		Mala	

Figura 57 Formulario de Levantamiento Visual de Datos 050. Fuente: Elaborado por el autor.

1. Información General										
Edad (Años)			15							
Dirección:		Entre las calles 24 de Mayo y Simón Bolívar								
Edificación Nº:		51								
Inspector:	J	Juan Vargas Centanaro								
2. Mate	eria	al de	Construcción							
Hormigón Armad	lo	X	Mixto							
Acero										

Acero									
			3. Us	so de	l Edificio				
Residencial	X	Comercial			Educa	ación		Gobierno	
		4	.1.Sistema	estru	cturales I)úcti	les		
Sistemas Duales Pórticos Mon			Resis ment		X	Es	Otros Sistemas structurales para Edificaciones		
	4.2	. Siste	ma estructı	ırale	s de Ducti	lidad	l Limita	da	
Pórticos Resis	stente a	Mome	entos		Muros Estructurales Portantes				
			5. Dimen	sion	es princip	ales			
Númer	Número de Pisos =					Altura	a de la ec	lificación =	11.5
			6. Estad	o de	conservac	ión			
Bueno X Regular				r			Mala		

Figura 58 Formulario de Levantamiento Visual de Datos 051. Fuente: Elaborado por el autor.

1. Información General								
Edad (Años)		45						
Dirección:	ca	Calle Simón Bolívar, entre las calles 10 de Agosto y 24 de Mayo						
Edificación Nº:		52						
Inspector:	J	Juan Vargas Centanaro						
2. Mate	eri	al de	Construcción					
Hormigón Armad	lo	X	Mixto					
Acero								
			2 11 1					

Acero							
			3. Uso d	el Edificio			
Residencial	X	Comercial		Educa	ción	Gobierno	
		4.1.Sist	ema estr	ucturales Dú	íctiles		
Sistemas Dijales				Otros Sistemas Momentos Otros Sistemas Estructurales para Edificaciones			
	4.2.	Sistema est	ructural	es de Ductili	dad Limita	da	
Pórticos Resi	stente a N	Momentos	X	Mu	Muros Estructurales Portantes		
		5. D	imensio	nes principal	les		
Númer	o de Pisc	os =	3	A	Altura de la edificación =		
		6. F	Estado de	e conservació	ón		
Bueno		X	Regu	lar		Mala	

Figura 59 Formulario de Levantamiento Visual de Datos 052. Fuente: Elaborado por el autor.

FORMULARIO DE LEVANTAMIENTO VISUAL DE DATOS

1. In:	for	mac	ión General						
Edad (Años)		35							
Dirección:	Calle Simón Bolívar, Entre las calles 10 de Agosto y 24 de Mayo								
Edificación Nº:	53								
Inspector:		Jua	an Vargas Centanaro)					
2. Mate	eria	al de	Construcción						
Hormigón Armad	lo		Mixto	X					
Acero									

				ar	X		Mala	
		6. Estad	o de	conservació	n			
Número	Número de Pisos =				ltura	de la edi	ficación =	4
		5. Dimen	sion	es principal	es	•	_	
Pórticos Resiste	ente a Mor	mentos	X	Mu	Muros Estructurales Portantes			
	4.2. Sist	tema estructı	ırale	s de Ductilio	dad l	Limi <mark>tad</mark> a	1	
Sistemas Duales	a Duales I I			istente a tos		Est	etros Sistemas cructurales para Edificaciones	
		4.1.Sistema	estru	cturales Dú	ctile	S		
Residencial	Co	omercial	X	Educad	ción		Gobierno	
		3. Us	so de	l Edificio				
Acero								

Figura 60 Formulario de Levantamiento Visual de Datos 053. Fuente: Elaborado por el autor.

1. Información General									
Edad (Años)		45							
Dirección:	Entre las calles 10 de Agosto y Simón Bolívar								
Edificación Nº:	54								
Inspector:	J	uan V	Vargas Centanaro						
2. Mate	eria	al de	Construcción						
Hormigón Armad	lo		Mixto	X					
Acero									

Acelo										
			3. Us	so de	el Edifici	io				
Residencial	X	Comercial				Ed	lucac	ión	Gobierno	
		4	1.1.Sistema	estru	ıcturales	s Di	íctile	s		
Sistemas Duales Pórticos				Resi					Otros Sistemas structurales para Edificaciones	
	4.2	. Siste	ema estructi	ırale	s de Du	ctili	dad 1	Limitad	la	
Pórticos Resi	stente a	Mom	entos	X		Muros Estructurales Portantes				
			5. Dimen	sion	es princ	ipal	les			
Númei	Número de Pisos =					Altura de la edificación =			6.5	
			6. Estad	o de	conserv	ació	ón			
Bueno X Regular								Mala		

Figura 61 Formulario de Levantamiento Visual de Datos 054. Fuente: Elaborado por el autor.

1. Información General									
Edad (Años)		15							
Dirección:	Calle 10 de Agosto, entre las calles Pedro Carbo y Simón Bolívar								
Edificación Nº:		55							
Inspector:	J	Juan Vargas Centanaro							
2. Mate	2. Material de Construcción								
Hormigón Armad	lo	X	Mixto						
Acero									

110010									
			3. U	so de	l Edificio				•
Residencial	X	Con	nercial		Educa	ción		Gobierno	
		4	.1.Sistema	estru	cturales D	úctile	es		
Sistemas Duales Pórticos Mo			Resi		X	Est	etros Sistemas Eructurales para Edificaciones		
	4	.2. Siste	ma estructı	ırale	s de Ductili	dad	Limitada	a	
Pórticos Resis	stente	a Mome	entos		Muros Estructurales Portantes				
			5. Dimer	sion	es principa	les			
Númer	Número de Pisos =			2	A	Altura de la edificación =			5.5
			6. Estad	o de	conservacio	ón			
Bueno		X	Regular					Mala	

Figura 62 Formulario de Levantamiento Visual de Datos 055. Fuente: Elaborado por el autor.

1. Información General										
Edad (Años)		45								
Dirección:		O de Agosto, entre las Pedro Carbo y Simón								
Edificación Nº:	56									
Inspector:	J	Juan Vargas Centanaro								
2. Mat	eri	al de	Construcción							
Hormigón Armad	do	X	Mixto							
Acero										

		3. l	J so de	l Edificio			
Residencial	X	Comercial		Educación		Gobierno	
		4.1.Sistema	ı estru	cturales Dúc	ctiles		
Sistemas Dijales			os Res ⁄Iomen	istente a		Otros Sistemas Estructurales para Edificaciones	
	4.2	2. Sistema estruc	turale	s de Ductilid	ad Limita	ada	
Pórticos Re	sistente a	Momentos	X	Mur	Muros Estructurales Portantes		
		5. Dime	ension	es principale	S		
Núm	Número de Pisos =			A	Altura de la edificación =		
		6. Esta	do de	conservación	1		
Bueno Regular Ma					Mala	X	

Figura 63 Formulario de Levantamiento Visual de Datos 056. Fuente: Elaborado por el autor.

1. Información General									
Edad (Años)		45							
Dirección:	ca	Calle 10 de Agosto, entre las calles Pedro Carbo y Simón Bolívar							
Edificación Nº:		57							
Inspector:	J	uan V	Vargas Centanaro						
2. Mate	eri	al de	Construcción						
Hormigón Armad	do Mixto X								
Acero									

		3. U	so de	el Edificio			
Residencial	X	Comercial		Educac	ción	Gobierno	
	•	4.1.Sistema	estru	cturales Dú	ctiles		
Sistemas Duales Pórticos Mo						Otros Sistemas Estructurales para Edificaciones	
	4.	2. Sistema estruct	urale	s de Ductilio	dad Limi	tada	
Pórticos Resis	tente	a Momentos	X	Muı	Muros Estructurales Portantes		
		5. Dimer	nsion	es principal	es		
Número	Número de Pisos =			Altura de la edificación =			7
		6. Estad	lo de	conservació	n		
Bueno						Mala	X

Figura 64 Formulario de Levantamiento Visual de Datos 057. Fuente: Elaborado por el autor.

FORMULARIO DE LEVANTAMIENTO VISUAL DE DATOS

1. Información General									
Edad (Años)		15							
Dirección:	Calle 10 de Agosto, entre las calles Pedro Carbo y Simón Bolívar								
Edificación Nº:	58								
Inspector:	J	uan V	Vargas Centanaro						
2. Mate	eria	al de	Construcción						
Hormigón Armad	lo	X	Mixto						
Acero									

Acero												
3. Uso del Edificio												
Residencial	X	Cor	nercial	X	Educ	ación		Gobierno				
	4.1.Sistema estructurales Dúctiles											
Sistemas Duales Pórticos Mo				Resis ment		X	Es	Otros Sistemas tructurales para Edificaciones				
	4	1.2. Siste	ma estructı	ırale	s de Duct	ilidad	Limita	da				
Pórticos Resis	stente	e a Mome	entos		Muros Estructurales Portantes							
			5. Dimen	sion	es princip	ales						
Número de Pisos =			3		Altura	de la ed	lificación =	10.1				
			6. Estad	o de	conservac	ción						
Bueno X Regular Mala												

Figura 65 Formulario de Levantamiento Visual de Datos 058. Fuente: Elaborado por el autor.

FORMULARIO DE LEVANTAMIENTO VISUAL DE DATOS

1. Información General											
Edad (Años)	7										
Dirección:	ca		10 de Agosto, entre las Pedro Carbo y Simón ar								
Edificación Nº:	59										
Inspector:	J	uan '	Vargas Centanaro								
2. Mate	eri	al de	Construcción								
Hormigón Armad	do	X	Mixto								
Acero											
		•	3 Uso de								

Acero			2.11		1171'6" '					
			3. U	so de	l Edificio					
Residencial	X	Cor	mercial	X	Educa	ción	Gobierno			
4.1.Sistema estructurales Dúctiles										
Sistemas Duales Pórticos Mon						X	Otros Sistemas Estructurales para Edificaciones			
	4.2	. Siste	ma estructi	urale	s de Ductili	dad	Limitada			
Pórticos Resi	stente a	Mom	entos		Mu	ros E	Estructurales Portantes			
			5. Dimer	sion	es principa	les				
Número de Pisos =				2	Altura de la edificación = 5.5					
			6. Estad	o de	conservacio	ón				
Bueno		X Regular Mala					Mala			

Figura 66 Formulario de Levantamiento Visual de Datos 059. Fuente: Elaborado por el autor.

FORMULARIO DE LEVANTAMIENTO VISUAL DE DATOS

1. Información General									
Edad (Años)		15							
Dirección:	ca	Calle 10 de Agosto, entre las calles Pedro Carbo y Simón Bolívar							
Edificación Nº:	60								
Inspector:	J	uan V	Vargas Centanaro						
2. Mate	eria	al de	Construcción						
Hormigón Armad	lo	X	Mixto						
Acero									

Acero										
			3. Us	so de	l Edificio					
Residencial	X	Cor	mercial	X	Educa	ción		Gobierno		
	4.1.Sistema estructurales Dúctiles									
Sistemas Duales Pórticos Mo				Resi		X	Est	otros Sistemas tructurales para Edificaciones		
	4	1.2. Siste	ma estructı	ırale	s de Ductili	idad	Limitada	a		
Pórticos Resi	stente	e a Mom	entos		Mu	ros E	Estructura	les Portantes		
			5. Dimen	sion	es principa	les				
Número de Pisos =				3	Altura de la edificación = 7.7				7.7	
			6. Estad	o de	conservacio	ón				
Bueno										

Figura 67 Formulario de Levantamiento Visual de Datos 060. Fuente: Elaborado por el autor.

1. Información General											
Edad (Años)		15									
Dirección:		las calles 10 de Agosto Carbo	оу								
Edificación Nº:	61										
Inspector:	J	uan V	an Vargas Centanaro								
2. Mate	eri	al de	Construcción								
Hormigón Armad	do	X	Mixto								
Acero											
			2 77	-							

Acero											
3. Uso del Edificio											
Residencial		Com	nercial	X	Educad	ción		Gobierno			
	4.1.Sistema estructurales Dúctiles										
Sistemas Duales Pórticos Mo				Resi		X	Es	Otros Sistemas structurales para Edificaciones			
	4.2.	Sisten	na estructu	ırale	s de Ductilio	dad 1	Limitad	a			
Pórticos Resis	stente a l	Mome	ntos		Muı	ros E	structura	ales Portantes			
			5. Dimen	sion	es principal	es					
Número de Pisos =				1	A	ltura	de la ed	ificación =	4		
			6. Estad	o de	conservació	n					
Bueno X Re				egula	ır			Mala			

Figura 68 Formulario de Levantamiento Visual de Datos 061. Fuente: Elaborado por el autor.

FORMULARIO DE LEVANTAMIENTO VISUAL DE DATOS

1. Información General								
Edad (Años)			23					
	C	alle I	Pedro Carbo, entre la	S				
Dirección:	ca	ılles	10 de Agosto y 24 de	•				
	M	Mayo						
Edificación Nº:	62							
Inspector:	J	uan V	Vargas Centanaro					
2. Mate	eria	al de	Construcción					
Hormigón Armad	lo	X	Mixto					
Acero								

110010												
			3. U	so de	l Edificio							
Residencial	X	Coı	mercial	X	Educación			Gobierno				
	4.1.Sistema estructurales Dúctiles											
Sistemas Dual	Sistemas Dijales				Resistente a X Estruc			Otros Sistemas tructurales para Edificaciones				
	4	.2. Siste	ma estructi	ırale	s de Ducti	lidad	Limita	da				
Pórticos Resi	stente	a Mom	entos		Muros Estructurales Portantes							
			5. Dimer	sion	es princip	ales						
Númer	Número de Pisos =				Altura de la edificación =			12.5				
			6. Estad	o de	conservac	ión	•	-				
Bueno		X	Re	r			Mala					

Figura 69 Formulario de Levantamiento Visual de Datos 062. Fuente: Elaborado por el autor.

1. Información General									
Edad (Años)			55						
Dirección:	ca	Calle Pedro Carbo, entre las calles 10 de Agosto y 24 de Mayo							
Edificación Nº:	63								
Inspector:	J	uan V	Vargas Centanaro						
2. Mate	eria	al de	Construcción						
Hormigón Armad	lo	X	Mixto						
Acero									

Acero										
			3. Us	so de	l Edificio					
Residencial		Comercial			Educad	ción		Gobierno		
4.1.Sistema estructurales Dúctiles										
Sistemas Duales				S Resistente a Estructu			Otros Sistemas structurales para Edificaciones			
	4.2.	Siste	ma estructu	ırale	s de Ductilio	dad Li	mitada	a		
Pórticos Resis	stente a l	Mom	entos	X	Mu	Muros Estructurales Portantes				
			5. Dimen	sion	es principal	es				
Númer	Número de Pisos =				A	ltura de	e la edi	ificación =	4	
			6. Estad	o de	conservació	n				
Bueno		X Regular						Mala		

Figura 70 Formulario de Levantamiento Visual de Datos 063. Fuente: Elaborado por el autor.

1. In:	1. Información General									
Edad (Años)			15							
Dirección:		Entre las calles Pedro Carbo y 24 de Mayo								
Edificación Nº:	64									
Inspector:	Jı	uan V	Vargas Centanaro							
2. Mate	eria	al de	Construcción							
Hormigón Armad	lo	X	Mixto							
Acero										

Bueno		X	ı	o de gula	conservac	ión	T	Mala		
Númer	Número de Pisos =						a de la ed	lificación =	11.5	
			5. Dimen	sion	es princip	ales				
Pórticos Resis	stente	a Mom	entos	Muros Estructurales Portantes						
	4	.2. Siste	ma estructi	ırale	s de Ducti	lidad	l Limita	da		
Sistemas Duales					Resistente a			Otros Sistemas tructurales para Edificaciones		
4.1.Sistema estructurales Dúctiles										
Residencial	X	Coı	mercial	X	Educa	Educación		Gobierno		
			3. Us	so de	l Edificio					
7 ICC10										

Figura 71 Formulario de Levantamiento Visual de Datos 064. Fuente: Elaborado por el autor.

1. Información General										
Edad (Años)			17							
Dirección:	ca		24 de Mayo, entre las Pedro Carbo y Simói r							
Edificación Nº:	65									
Inspector:	Juan Vargas Centanaro									
2. Mat	eria	al de	Construcción							
Hormigón Armad	do	X	Mixto							
Acero										
			3. U	so de						
Residencial		X	Comercial	X						
		•	4.4.01.4							

Acero										
			3. Us	so de	l Edificio					
Residencial	X	Coı	mercial	X	Educa	ción		Gobierno		
4.1.Sistema estructurales Dúctiles										
Sistemas Duales				icos Resistente a Momentos Otros Sistemas Estructurales para Edificaciones			tructurales para			
	4.2.	Siste	ma estructu	ırale	s de Ductili	dad]	Limitada	ı		
Pórticos Resis	stente a l	Mom	entos		Muros Estructurales Portantes					
			5. Dimen	sion	es principal	les				
Númer	Número de Pisos =					ltura	de la edi	ficación =	6	
			6. Estad	o de	conservació	in	•			
Bueno		X	K Regular					Mala		

Figura 72 Formulario de Levantamiento Visual de Datos 065. Fuente: Elaborado por el autor.

1. Información General									
Edad (Años)			35						
Dirección:	ca	Calle 24 de Mayo, entre las calles Pedro Carbo y Simón Bolívar							
Edificación Nº:	66								
Inspector:	J	uan V	Vargas Centanaro						
2. Mate	eria	al de	Construcción						
Hormigón Armad	lo	X	Mixto						
Acero									

Acero							000000000000000000000000000000000000000		
			3. U	so de	l Edificio				
Residencial	X	Coı	mercial	X	Educa	ción		Gobierno	
		2	1.1.Sistema	estru	cturales Dú	ictiles			
Sistemas Duales				S Resistente a Estructurales p			Otros Sistemas tructurales para Edificaciones		
	4.	.2. Siste	ma estructi	ırale	s de Ductili	dad Li	imitada	1	
Pórticos Res	sistente	a Mom	entos	X	Muros Estructurales Portantes				
			5. Dimer	sion	es principal	es			
Núme	Número de Pisos =				4 Altura de la edificación =			ficación =	9
			6. Estad	o de	conservació	n			
Bueno		X	R	egula	ar			Mala	

Figura 73 Formulario de Levantamiento Visual de Datos 066. Fuente: Elaborado por el autor.

1. In	for	mac	ión General						
Edad (Años)			35						
Dirección:	ca	Calle 24 de Mayo, entre las calles Pedro Carbo y Simón Bolívar							
Edificación Nº:		67							
Inspector:	J	uan ^v	Vargas Centanaro						
2. Mat	eri	al de	Construcción						
Hormigón Arma	do	X	Mixto						
Acero									
			3. U	J so de					
Residencial		X	Comercial						

Acero									
			3. Us	so de	l Edificio				
Residencial	X	Coı	mercial		Educación			Gobierno	
		4	1.1.Sistema	estru	cturales Dú	ictile	s		
Sistemas Duales			os Resistente a Momentos			Est	Otros Sistemas Estructurales para Edificaciones		
	4	1.2. Siste	ma estructu	ırale	s de Ductili	dad l	Limitada	l	
Pórticos Resis	stente	e a Mom	entos	X	Mu	Muros Estructurales Portantes			
			5. Dimen	sion	es principal	es			
Número de Pisos =					Altura de la edificación =				
			6. Estad	o de	conservació	n			
Bueno			R	egula	ar	X		Mala	

Figura 74 Formulario de Levantamiento Visual de Datos 067. Fuente: Elaborado por el autor.

1. In:	for	mac	ión General								
Edad (Años)		45									
Dirección:	Calle 24 de Mayo, entre las calles Pedro Carbo y Simón Bolívar										
Edificación Nº:	68										
Inspector:	Jı	Juan Vargas Centanaro									
2. Mate	eria	al de	Construcción								
Hormigón Armad	lo	X	Mixto								
Acero											

Acelo												
			3. U	so de	l Edificio							
Residencial	X	Coı	mercial		Educa	ción		Gobierno				
		4	1.1.Sistema	estru	cturales Dú	ictiles						
Sistemas Dijales				Res	istente a tos		Es	Otros Sistemas Estructurales para Edificaciones				
	4	.2. Siste	ma estructi	ırale	s de Ductili	dad Lin	nitada	ì				
Pórticos Resistente a Momentos				X	Mu	ros Estru	ıctura	les Portantes				
			5. Dimer	sion	es principal	es						
Número de Pisos =			3	3 Altura de la edificación =								
			6. Estad	o de	conservació	n						
Bueno		X	R	egula	ar			Mala				

Figura 75 Formulario de Levantamiento Visual de Datos 068. Fuente: Elaborado por el autor.

FORMULARIO DE LEVANTAMIENTO VISUAL DE DATOS 1. Información General Edad (Años) 30 Calle 24 de Mayo, entre las Dirección: calles Pedro Carbo y Simón Bolívar Edificación Nº: 69 Inspector: Juan Vargas Centanaro 2. Material de Construcción Hormigón Armado Mixto Acero 3. Uso del Edificio X Residencial Comercial Educación Gobierno 4.1. Sistema estructurales Dúctiles **Otros Sistemas** Pórticos Resistente a X Estructurales para Sistemas Duales Momentos Edificaciones 4.2. Sistema estructurales de Ductilidad Limitada Pórticos Resistente a Momentos Muros Estructurales Portantes 5. Dimensiones principales Número de Pisos = Altura de la edificación = 3.8 6. Estado de conservación

Figura 76 Formulario de Levantamiento Visual de Datos 069. Fuente: Elaborado por el autor.

Regular

Mala

Bueno

FORMULARIO DE LEVANTAMIENTO **VISUAL DE DATOS** 1. Información General Edad (Años) Calle 24 de Mayo, entre las Dirección: calles Pedro Carbo y Simón Bolívar Edificación Nº: 70 Inspector: Juan Vargas Centanaro 2. Material de Construcción Hormigón Armado Mixto Acero 3. Uso del Edificio Residencial X X Educación Comercial Gobierno 4.1. Sistema estructurales Dúctiles Otros Sistemas Pórticos Resistente a Sistemas Duales X Estructurales para Momentos Edificaciones 4.2. Sistema estructurales de Ductilidad Limitada Pórticos Resistente a Momentos Muros Estructurales Portantes 5. Dimensiones principales Número de Pisos = Altura de la edificación = 3.8 6. Estado de conservación X Bueno Regular Mala

Figura 77 Formulario de Levantamiento Visual de Datos 070. Fuente: Elaborado por el autor.

1. In:	for	mac	ión General						
Edad (Años) 5									
Dirección:			as calles Simón Bolí e Mayo	var					
Edificación Nº: 71									
Inspector:	Juan Vargas Centanaro								
2. Mate	eria	al de	Construcción						
Hormigón Armad	do	X	Mixto						
Acero									
			2 TI						

110010									
			3. Us	so de	el Edificio				
Residencial		Comercial			Educa	ción		Gobierno	
		4	.1.Sistema	estru	ıcturales Dı	íctile	es		
Sistemas Dijales			Resi men	stente a	X	Es	Otros Sistemas tructurales para Edificaciones		
	4.2.	Siste	ma estructı	ırale	s de Ductili	dad	Limitad	a	
Pórticos Resistente a Momentos					Mu	ros E	Estructura	ales Portantes	
			5. Dimen	sion	es principa	les			
Número de Pisos =			1	1 Altura de la edificación =					
			6. Estad	o de	conservacio	ón			
Bueno					ar			Mala	

Figura 78 Formulario de Levantamiento Visual de Datos 071. Fuente: Elaborado por el autor.

FORMULARIO DE LEVANTAMIENTO VISUAL DE DATOS

1. Información General												
Edad (Años)			35									
Dirección:	Calle Simón Bolívar, entre las calles 10 de Agosto y 24 de Mayo											
Edificación Nº:	Edificación N°: 72											
Inspector:	Juan Vargas Centanaro											
2. Mate	eri	al de	Construcción									
Hormigón Armad	lo	X	Mixto									
Acero			Madera									
		•	0 TI									

			3. U	so de	el Edificio						
Residencial						Educación Gob					
		4	.1.Sistema	estru	ıcturales Dú	íctiles					
Sistemas Dijales			s Res	istente a tos		Otros Sistemas Estructurales para Edificaciones					
	4.2	2. Siste	ma estruct	urale	s de Ductili	dad Lim	itada				
4.2. Sistema estruct Pórticos Resistente a Momentos			X	Mu	Muros Estructurales Portantes						
			5. Dimei	ısion	es principal	les					
Númer	Número de Pisos =			2	A	ltura de l	ra de la edificación =				
			6. Estad	lo de	conservació	n					
Bueno		X	R	egul	ar		Mala				

Figura 79 Formulario de Levantamiento Visual de Datos 072. Fuente: Elaborado por el autor.

LICE	ADO POR : SRA. ESTHER DEL CARMEN VIZUETE								F. 3	nicio:	septien	bre 2, 20	14		Per	foraci	ón :		1
ROYEC	TO : ESTUDIO DE SUELOS PARA LA CONSTRUCCIÓN DE UN EDI	FICIO "H	ERMANA	S VIZUE	TE-SILV	A" DE 2	PISOS	ALTOS	F.	Fin:	septien	bre 2, 20	1.4			Hoja:	1	de	2
CALI	ZACIÓN : CANTÓN MILAGRO, CALLE M. HIDALGO Y TORRES CA	USANA							_						_	_			_
MUESTRA Nº	DESCRIPCION	PERFIL	N.F.	Prof. (m)	Cota		"N" SF	т	DE GOLPES	qu (Kg/cm2)			DADES %	I w	- 33	DE TERBE	BERG Y		
_		532 FEB.		0,00	0,800	0 50	100	150 200	2		0 5	0 100	150 200	56	%	56	IP	T/m ¹	,
2	Pavimento Grava Limosa Color Café Oscuro Con Arena Media Condic, Muy Suelta	***		-0,10	0,700		T							14.0	N.P.	N.P.	N.P.	1,73	
3	Grava Arcillosa Color Café Claro Con Arena Gruesacondic. Suelta (Con Presencia De Material De Desalojo) Condic. Suelta	***		-1,07					8						43	20	23	1,68	Ī
4	Arcillas Y Limos De Plassicidad Media Color Café Oscuro Con Arena Fina Cornelst. Blanda		-1,20 N. F.	-2,10	-0,400					0,38	1			47,5	45	28	17	1,40	
5	Limo Inorgánico Color Café Oscuro Y Con Poca Arena Fina Consisti, Blanda				-2,200					0,28					N.P.			1,32	
6	Arcilia De Plasticidad Media Color Café Oscure Y Con Poca Arena Fina Consist: Muy Blanda				-3,200					0,25					36		16	1,30	
7	Umo (norganico Color Café Oscuro Con Arena Fina Consist, Blanda			-5,00						0,26					N.P.				
8	Arcilla De Piasticidad Baja Color Cefé Oscure Y Con Poca Areva Fina Consist. Durà				-4,800	+			10	0,20					29	17	12	1,47	
9	Arcilla De Plasticidad Media Color Gris Claro Y Con Pone Arene Fina Consist, Muy Blanda			-7,00	-6,200					0,25				48,8	47	24	23	1,35	
10	Arcilla De Plasticidad Baja Color Gris Claro Con Arena Fina Consist , Blanda			-7,80	-7,000					0,38				49,6	33	15	18	1,40	
11	Arcilla Inorganica De Alta Plasticidad Color Gris Verdoso Consiltt, Dura																		
12	Arcilla Inorganica De Alta Plasticidad Color Gris Verdoso Y Con Poca Arena Fina Consist. Dura				-8,200				10							26		0.100	
13	Arcilla De Plasticidad Media Color Gris Verdoso Y Con Poca Arena Fina Consist. Media			-10,00	-9,200	İ			19					53,2	56	26		1,52	
14	Arcilia De Plasticidad Media Color Gris Verdoso			-11,00	-10,200		1		8					55,3	43	20	23	1,45	

Figura 80 Estudio de Suelos: CONSTRULADESA SUELOS Y HORMRIGONES S.A.